, Volume 233, Issue 2, pp 309–323 | Cite as

A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development

  • Linglin Wan
  • Wenjun Zha
  • Xiaoyan Cheng
  • Chuan Liu
  • Lu Lv
  • Caixiang Liu
  • Zhanqi Wang
  • Bo Du
  • Rongzhi Chen
  • Lili Zhu
  • Guangcun He
Original Article


Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.


Rice (Oryza sativaβ-1,3-Glucanase Callose Tetrad Pollen development Male sterility 



RNA interference


RNAi construct of Osg1


Pollen mother cell


Isopropyl beta-d-thiogalactopyranoside



This research work was supported by grants from the National Natural Science Foundation of China (30730062), and the National Special Key Project on Functional Genomics and Biochips (2006AA10A103).

Supplementary material

425_2010_1301_MOESM1_ESM.pdf (235 kb)
Supplementary material (PDF 236 kb)


  1. Akiyama T, Pillai MA (2001) Molecular cloning, characterization and in vitro expression of a novel endo-1,3-β-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci 161:1089–1098. doi: 10.1016/S0168-9452(01)00518-0 Google Scholar
  2. Akiyama T, Kaku H, Shibuya N (1996) Purification and properties of a basic endo-1,3-beta-glucanase from rice (Oryza sativa L.). Plant Cell Physiol 37:702–705PubMedGoogle Scholar
  3. Akiyama T, Shibuya N, Hrmova M, Fincher GB (1997) Purification and characterization of a (1→3)-beta-d-glucan endohydrolase from rice (Oryza sativa) bran. Carbohydr Res 297:365–374. doi: 10.1016/S0168-9452(98)00032-6 CrossRefPubMedGoogle Scholar
  4. Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139. doi: 10.1007/s00425-004-1312-8 CrossRefPubMedGoogle Scholar
  5. Akiyama T, Jin S, Yoshida M, Hoshino T, Opassiri R, Ketudat Cairns JR (2009) Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. J Plant Physiol 166:1814–1825. doi: 10.1016/j.jplph.2009.06.002 CrossRefPubMedGoogle Scholar
  6. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869. doi: 10.1023/A:1006095023050 CrossRefPubMedGoogle Scholar
  7. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887. doi: 10.1105/tpc.4.8.879 CrossRefPubMedGoogle Scholar
  8. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478. doi: 10.1093/jxb/ern355 CrossRefPubMedGoogle Scholar
  9. Bucciaglia PA, Smith AG (1994) Cloning and characterization of Tag1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24:903–914. doi: 10.1007/BF00014444 CrossRefPubMedGoogle Scholar
  10. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30. doi: 10.1111/j.1365-313X.1993.tb00007.x CrossRefPubMedGoogle Scholar
  11. Carpita NC, McCann MC (2010) The maize mixed-linkage (1→3),(1→4)-β-d-glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol 153:1362–1371. doi: 10.1104/pp.110.156158 CrossRefPubMedGoogle Scholar
  12. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA., Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565. doi: 10.1104/pp.010146 Google Scholar
  13. Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G (2007) Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19:847–861. doi: 10.1105/tpc.106.044123 CrossRefPubMedGoogle Scholar
  14. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. doi: 10.1007/BF01969712 CrossRefPubMedGoogle Scholar
  15. Chye ML, Cheung KY (1995) Beta-1,3-glucanase is highly-expressed in laticifers of Hevea brasiliensis. Plant Mol Biol 29:397–402CrossRefPubMedGoogle Scholar
  16. Cosgrove DJ (2005) Growth of the plant cell wall. Nature 6:850–861. doi: 10.1038/nrm1746 Google Scholar
  17. De Loose M, Alliotte T, Gheysen G, Genetello C, Gielen J, Soetaert P, Van Montagu M, Inze D (1988) Primary structure of a hormonally regulated beta-glucanase of Nicotiana plumbaginifolia. Gene 70:13–23. doi: 10.1016/0378-1119(88)90100-X CrossRefPubMedGoogle Scholar
  18. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DP (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328. doi: 10.1111/j.1365-313X.2005.02379.x CrossRefPubMedGoogle Scholar
  19. Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168. doi: 10.1073/pnas.0912139106 CrossRefPubMedGoogle Scholar
  20. Eschrich W, Currier HB (1964) Identification of callose by its diachrome and fluorochrome reactions. Biotech Histochem 39:303–307. doi: 10.3109/10520296409061248 CrossRefGoogle Scholar
  21. Feng JH, Lu YG, Liu XD, Xu XB (2001) Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci 15:21–28Google Scholar
  22. Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087. doi: 10.1104/pp.103.035998 CrossRefPubMedGoogle Scholar
  23. Fincher GB (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol 149:27–37. doi: 10.1104/pp.108.130096 CrossRefPubMedGoogle Scholar
  24. Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669. doi: 10.1023/A:1006083725102 CrossRefPubMedGoogle Scholar
  25. Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, Zhu L, He G (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146:1810–1820. doi: 10.1104/pp.107.111484 CrossRefPubMedGoogle Scholar
  26. Heslop-Harrison J, Mackenzie A (1967) Autoradiography of soluble [2–14C] thymidine derivatives during meiosis and microsporogenesis in Lilium anthers. J Cell Sci 2:387–400PubMedGoogle Scholar
  27. Heyn ANJ (1969) Glucanase activity in coleoptiles of Avena. Arch Biochem Biophys 132:442–449. doi: 10.1016/0003-9861(69)90387-7 CrossRefPubMedGoogle Scholar
  28. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271.x CrossRefPubMedGoogle Scholar
  29. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedGoogle Scholar
  30. Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R (1993) The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1,3-glucanases. Plant J 4:1023–1033. doi: 10.1046/j.1365-313X.1993.04061023.x CrossRefPubMedGoogle Scholar
  31. Hoson T, Masuda Y, Nevins DJ (1992) Comparison of the outer and inner epidermis: inhibition of auxin-induced elongation of maize coleoptiles by glucan antibodies. Plant Physiol 98:1298–1303CrossRefPubMedGoogle Scholar
  32. Huang N, Wu L, Nandi S, Bowman E, Huang J, Sutliff T, Rodriguez RL (2001) The tissue-specific activity of a rice beta-glucanase promoter (Gns9) is used to select rice transformants. Plant Sci 161:589–595. doi: 10.1016/S0168-9452(01)00447-2 CrossRefGoogle Scholar
  33. Iglesias VA, Meins F Jr (2000) Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166. doi: 10.1046/j.1365-313x.2000.00658.x Google Scholar
  34. Inouhe M, Nevins DJ (1991) Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol 96:426–431CrossRefPubMedGoogle Scholar
  35. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47. doi: 10.1093/pcp/pci501 CrossRefPubMedGoogle Scholar
  36. Jin W, Horner HT, Palmer RG (1997) Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr]. Sex Plant Reprod 10:13–21CrossRefGoogle Scholar
  37. Labavitch JM (1981) Cell wall turnover in plant development. Ann Rev Plant Physiol 31:385–406CrossRefGoogle Scholar
  38. Labrador E, Nevins DJ (1989) An exo-β-d-glucanase derived from Zea coleoptile walls with a capacity to elicit cell elongation. Physiol Plant 77:479–486. doi: 10.1111/j.1399-3054.1989.tb05380.x CrossRefGoogle Scholar
  39. Leubner-Metzger G, Meins F Jr (1999) Functions and regulation of plant β-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants, vol 3. CRC Press, Boca Raton, pp 49–76Google Scholar
  40. Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated β-1,3-glucanase in Arabidopsis. Plant J 49:669–682. doi: 10.1111/j.1365-313X.2006.02986.x CrossRefPubMedGoogle Scholar
  41. Linthorst HJM, Van Loon LC (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150. doi: 10.1080/07352689109382309 CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  43. Lotan T, Ori N, Fluhr R (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1:881–887. doi: 10.1105/tpc.1.9.881 CrossRefPubMedGoogle Scholar
  44. Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993) Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190:88–96. doi: 10.1007/BF00195679 CrossRefGoogle Scholar
  45. Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408. doi: 10.1007/s11103-006-9031-0 CrossRefPubMedGoogle Scholar
  46. Masuda Y (1968) Role of cell-wall-degrading enzymes in cell-wall loosening in oat coleoptile. Planta 83:171–184. doi: 10.1007/BF00385022 CrossRefGoogle Scholar
  47. Masuda Y, Yamamoto R (1970) Effect of auxin on β-1,3-glucanase activity in Avena coleoptile. Dev Growth Differ 11:287–296. doi: 10.1111/j.1440-169X.1970.00287.x CrossRefPubMedGoogle Scholar
  48. McCormick S (1993) Male gametophyte development. Plant cell 5:1265–1275CrossRefPubMedGoogle Scholar
  49. Melchers LS, Sela-Buurlage MB, Vloemans SA, Woloshuk CP, Vanroekel JSC, Pen J, van den Elzen PJM, Cornelissen BJC (1993) Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants. Plant Mol Biol 21:583–593. doi: 10.1007/BF00014542 CrossRefPubMedGoogle Scholar
  50. Memelink J, Linthorst HJ, Schilperoort RA, Hoge JH (1990) Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol Biol 14:119–126. doi: 10.1007/BF00018553 CrossRefPubMedGoogle Scholar
  51. Nakamura K, Matsuoka K (1993) Protein targeting to the vacuole in plant cells. Plant Physiol 101:1–5CrossRefPubMedGoogle Scholar
  52. Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684. doi: 10.1105/tpc.2.7.673 CrossRefPubMedGoogle Scholar
  53. Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Mol Biol 51:143–152. doi: 10.1023/A:1020714426540 CrossRefPubMedGoogle Scholar
  54. Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89. doi: 10.1016/j.plantsci.2009.11.001 CrossRefGoogle Scholar
  55. Rinne PLH et al (2005) Tobacco plants respond to the constitutive expression of the tospovirus movement protein NSM with a heat-reversible sealing of plasmodesmata that impairs development. Plant J 43:688–707. doi: 10.1111/j.1365-313X.2005.02489.x CrossRefPubMedGoogle Scholar
  56. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124. doi: 10.1046/j.1365-3040.2003.00950.x CrossRefGoogle Scholar
  57. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585. doi: 10.1023/A:1010695226241 CrossRefPubMedGoogle Scholar
  58. Romero GO, Simmons C, Yaneshita M, Doan M, Thomas BR, Rodriguez RL (1998) Characterization of rice endo-beta-glucanase genes (Gns2-Gns14) defines a new subgroup within the gene family. Gene 223:311–320. doi: 10.1016/S0378-1119(98)00368-0 CrossRefPubMedGoogle Scholar
  59. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 31–45Google Scholar
  60. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60. doi: 10.1105/tpc.017012 CrossRefPubMedGoogle Scholar
  61. Shamay I, Rafael F (1971) Mechanism of male sterility in petunia: the relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor Appl Genet 41:104–108. doi: 10.1007/BF00277751 Google Scholar
  62. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076. doi: 10.1105/tpc.106.046250 CrossRefPubMedGoogle Scholar
  63. Simmons CR, Litts JC, Huang N, Rodriguez RL (1992) Structure of a rice beta-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol Biol 18:33–45. doi: 10.1007/BF00018454 CrossRefPubMedGoogle Scholar
  64. Steiglitz H, Stern H (1973) Regulation of β-1,3-glucanase activity in developing anthers of Lilium. Dev Biol 34:169–173. doi: 10.1016/0012-1606(73)90347-3 CrossRefGoogle Scholar
  65. Stone BA, Clarke AE (1992) Chemistry and physiology of higher plant 1,3-β-glucans (callose). In: Stone BA, Clarke AE (eds) Chemistry and biology of (1–3)-β-glucans. La Trobe University Press, Bundoora, pp 365–429Google Scholar
  66. Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino O (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, beta-1,3-endoglucanase, in soybean. Plant Physiol 93:673–682CrossRefPubMedGoogle Scholar
  67. Thomas BR et al (2000) Endo-1,3;1,4-β-glucanase from coleoptiles of rice and maize: role in the regulation of plant growth. Int J Biol Macromol 27:145–149. doi: 10.1016/S0141-8130(00)00110-0 CrossRefPubMedGoogle Scholar
  68. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507. doi: 10.1101/gad.5.3.496 CrossRefPubMedGoogle Scholar
  69. Warmke HE, Overman MA (1972) Cytoplasmic male sterility in sorghum: I. Callose behavior in fertile and sterile anthers. J Hered 63:103–108Google Scholar
  70. Waterkeyn L (1962) Les parois microsporocytaires de nature callosique chez Helleborus et Fadescantia. Cellule 62:225–255Google Scholar
  71. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590. doi: 10.1046/j.1365-313X.2001.01105.x CrossRefPubMedGoogle Scholar
  72. Wessels JGH, Sietsma JH (1981) Fungal cell wall: a survey. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B. Springer, Berlin, pp 352–394Google Scholar
  73. Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771. doi: 10.1105/tpc.4.7.759 CrossRefPubMedGoogle Scholar
  74. Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281. doi: 10.1023/A:1026536324081 CrossRefPubMedGoogle Scholar
  75. Yamaguchi T, Nakayama K, Hayashi T, Tanaka Y, Koike S (2002) Molecular cloning and characterization of a novel beta-1,3-glucanase gene from rice. Biosci Biotechnol Biochem 66:1403–1406. doi: 10.1271/bbb.66.1403 CrossRefPubMedGoogle Scholar
  76. Yamamoto R, Nevins DJ (1981) Coleoptile growth-inducing capacities of exo-β-(1→3)-glucanases from fungi. Physiol Plant 51:118–122. doi: 10.1111/j.1399-3054.1981.tb00888.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Linglin Wan
    • 1
  • Wenjun Zha
    • 1
  • Xiaoyan Cheng
    • 1
  • Chuan Liu
    • 1
  • Lu Lv
    • 1
  • Caixiang Liu
    • 1
  • Zhanqi Wang
    • 1
  • Bo Du
    • 1
  • Rongzhi Chen
    • 1
  • Lili Zhu
    • 1
  • Guangcun He
    • 1
  1. 1.Key Laboratory of Ministry of Education for Plant Development Biology, College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations