, Volume 233, Issue 1, pp 123–137 | Cite as

Molecular characterization of a miraculin-like gene differentially expressed during coffee development and coffee leaf miner infestation

  • Jorge Maurício Costa MondegoEmail author
  • Melina Pasini Duarte
  • Eduardo Kiyota
  • Leandro Martínez
  • Sandra Rodrigues de Camargo
  • Fernanda P. De Caroli
  • Beatriz Santos Capela Alves
  • Sandra Maria Carmello Guerreiro
  • Maria Luiza Vilela Oliva
  • Oliveiro Guerreiro-Filho
  • Marcelo Menossi
Original Article


The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.


Coffee Kunitz STI proteinase inhibitor Miraculin- like protein Plant-insect interaction Xylem Programmed cell death 



Nα-Benzoyl-d, l-Arginin-p-nitroanilid


Column volume


Immobilized metal affinity chromatography


Miraculin-like protein


Proteinase inhibitor


Soybean trypsin inhibitor


Rapid amplification of cDNA end



The authors are grateful to Daniel Ramiro and Silvia Mathiessen (IAC) for rearing the insects, Dr. Nilson Ivo Zanchin (Laboratório Nacional de Luz Sincrotron) and Prof. Dr. Fabio Maranhão Costa (Departamento de Genética, Evolução e Bioagentes, IB, UNICAMP) for the use of the fluorescence microscopes, and Edna Santos (Departamento de Genética, Evolução e Bioagentes, IB, UNICAMP) and Sebastião Militão (Departamento de Biologia Vegetal, IB, UNICAMP) for technical assistance. J.M.C.M. and M.P.D. were recipients of fellowships from FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo). L.M. received a PBIG-UNICAMP fellowship. S.C.R. received a fellowship from CAPES (Conselho de Aperfeiçoamento de Pesquisa em Ensino Superior). M.M. received a research fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). This research was supported by the Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café, FAEPEX/UNICAMP (project—040504), FAPESP (project—03/09361-4) and CNPq (479800/2004-9).

Supplementary material

425_2010_1284_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 29 kb)
425_2010_1284_MOESM2_ESM.doc (27 kb)
Supplementary material 2 (DOC 27 kb)
425_2010_1284_MOESM3_ESM.doc (3.4 mb)
Supplementary material 3 (DOC 3493 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Balbyshev NF, Lorenzen JH (1997) Hypersensitivity and egg drop: a novel mechanism of host plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 90:652–657Google Scholar
  3. Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60:519–531CrossRefPubMedGoogle Scholar
  4. Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20:1406–1420CrossRefPubMedGoogle Scholar
  5. Brenner ED, Lambert KN, Kaloshian I, Williamson VM (1998) Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol 118:237–247CrossRefPubMedGoogle Scholar
  6. De Guzman R, Riggs CD (2000) A survey of proteinases active during meiotic development. Planta 210:921–924CrossRefGoogle Scholar
  7. Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799CrossRefPubMedGoogle Scholar
  8. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223CrossRefPubMedGoogle Scholar
  9. Gahloth D, Selvakumar P, Shee C, Kumar P, Sharma AK (2010) Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murraya koenigii. Arch Biochem Biophys 494:15–22CrossRefPubMedGoogle Scholar
  10. Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384CrossRefPubMedGoogle Scholar
  11. Guerreiro-Filho O, Medina-Filho HP, Carvalho A (1991) Fontes de resistência ao bicho-mineiro, Perileucoptera coffeella, em Coffea spp. Bragantia 50:45–55CrossRefGoogle Scholar
  12. Guerreiro-Filho O, Denolf P, Peferoen M, Decazy B, Eskes AB, Frutos R (1998) Susceptibility of the coffee leaf miner (Perileucoptera spp.) to Bacillus thuringiensis delta-endotoxins: a model for transgenic perennial crops resistant to endocarpic insects. Curr Microbiol 36:175–179CrossRefGoogle Scholar
  13. Guerreiro-Filho O, Silvarolla MB, Eskes AB (1999) Expression and mode of inheritance in coffee to leaf miner Perileucoptera coffeella. Euphytica 105:7–15CrossRefGoogle Scholar
  14. Hansen D, Macedo-Ribeiro S, Veríssimo P, Yoo Im S, Sampaio MU, Oliva ML (2007) Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor. Biochem Biophys Res Commun 360:735–740CrossRefPubMedGoogle Scholar
  15. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151CrossRefPubMedGoogle Scholar
  16. Hilker M, Stein C, Schroder R, Varama M, Mumm R (2005) Insect egg deposition induces defense responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854CrossRefPubMedGoogle Scholar
  17. Hirai T, Sato M, Toyooka K, Sun HJ, Yano M, Ezura H (2010) Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells. J Plant Physiol 167:209–215CrossRefPubMedGoogle Scholar
  18. Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85CrossRefPubMedGoogle Scholar
  19. Jiménez T, Martín I, Labrador E, Dopico B (2007) A chickpea Kunitz trypsin inhibitor is located in cell wall of elongating seedling organs and vascular tissue. Planta 226:45–55CrossRefPubMedGoogle Scholar
  20. Jones BL, Fontanini D (2003) Trypsin/alpha-amylase inhibitors inactivate the endogenous barley/malt serine endoproteinase SEP-1. J Agric Food Chem 51:5803–5814CrossRefPubMedGoogle Scholar
  21. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  22. Karrer EE, Beachy RN, Holt CA (1998) Cloning of tobacco genes that elicit the hypersensitive response. Plant Mol Biol 36:681–690CrossRefPubMedGoogle Scholar
  23. Koistinen KM, Soininen P, Venalainen TA, Hayrinen J, Laatikainen R, Perakyla M, Tervahauta AI, Karenlampi SO (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66:2524–2533CrossRefPubMedGoogle Scholar
  24. Kozela C, Regan S (2003) How plants make tubes. Trends Plant Sci 8:159–164CrossRefPubMedGoogle Scholar
  25. Krauchenco S, Pando SC, Marangoni S, Polikarpov I (2003) Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds. Biochem Biophys Res Commun 312:1303–1308CrossRefPubMedGoogle Scholar
  26. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626CrossRefPubMedGoogle Scholar
  27. Lawrence SD, Novak NG, Blackburn MB (2007) Inhibition of proteinase inhibitor transcripts by Leptinotarsa decemlineata regurgitant in Solanum lycopersicum. J Chem Ecol 33:1041–1048CrossRefPubMedGoogle Scholar
  28. Li J, Brader G, Palva ET (2008) Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol Plant 1:482–495CrossRefPubMedGoogle Scholar
  29. Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800CrossRefPubMedGoogle Scholar
  30. Liu Y, Salzman RA, Pankiw T, Zhu-Salzman K (2004) Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N. Insect Biochem Mol Biol 34:1069–1077CrossRefPubMedGoogle Scholar
  31. McLachlan AD (1979) Threefold structural pattern in the soybean trypsin inhibitor (Kunitz). J Mol Biol 133:557–563CrossRefPubMedGoogle Scholar
  32. Medina-Filho HP, Carvalho AP, Mônaco LC (1977) Melhoramento do cafeeiro. XXXVII—observações sobre a resistência do cafeeiro ao bicho mineiro. Bragantia 36:131–137Google Scholar
  33. Mondego JMC, Guerreiro-Filho O, Bengtson MH, Drummond RD, Felix JM, Duarte MP, Ramiro D, Maluf MP, Sogayar MC, Menossi M (2005) Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Sci 169:351–360CrossRefGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco tissue culture. Physiol Plant 15:471–497CrossRefGoogle Scholar
  35. Murdock LL, Shade RE (2002) Lectins and proteinase inhibitors as plant defenses against insects. J Agric Food Chem 50:6605–6611CrossRefPubMedGoogle Scholar
  36. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: caterpillar saliva beats plant defenses. Nature 416:599–600CrossRefPubMedGoogle Scholar
  37. Nicholas KB, Nicholas HB Jr (1997) Gene doc: a tool for editing and annotating multiple sequence alignments. Distributed by the author. Available from
  38. Oliva ML, Sampaio UM (2008) Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties. Biol Chem 389:1007–1013CrossRefPubMedGoogle Scholar
  39. Onesti S, Brick P, Blow DM (1991) Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J Mol Biol 217:153–176CrossRefPubMedGoogle Scholar
  40. Paladino A, Costantini S, Colonna G, Facchiano AM (2008) Molecular modeling of miraculin: structural analyses and functional hypotheses. Biochem Biophys Res Commun 367:26–32CrossRefPubMedGoogle Scholar
  41. Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomol Exp Appl 99:79–85CrossRefGoogle Scholar
  42. Ravichandran S, Dasgupta J, Chakrabarti C, Ghosh S, Singh M, Dattagupta J (2001) The role of Asn14 in the stability and conformation of the reactive-site loop of winged bean chymotrypsin inhibitor: crystal structures of two point mutants Asn14–>Lys and Asn14–>Asp. Protein Eng 14:349–357CrossRefPubMedGoogle Scholar
  43. Rawlings ND, Tolle DP, Barrett AJ (2004) MEROPS: the peptidase database. Nucleic Acids Res 32 (Database issue):D160–D164Google Scholar
  44. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720CrossRefPubMedGoogle Scholar
  45. Rodrigues-Macedo ML, Machado Freire MG, Cabrini EC, Toyama MH, Novello JC, Marangoni S (2003) A trypsin inhibitor from Peltophorum dubium seeds active against pest proteinases and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae). Biochim Biophys Acta 1621:170–182PubMedGoogle Scholar
  46. Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449CrossRefGoogle Scholar
  47. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815CrossRefPubMedGoogle Scholar
  48. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  49. Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434CrossRefPubMedGoogle Scholar
  50. Shapiro AM, DeVay JE (1987) Hypersensitivity reaction of Brassica nigra L (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71:631–632CrossRefGoogle Scholar
  51. Shatters RG Jr, Bausher MG, Hunter WB, Chaparro JX, Dang PM, Niedz RP, Mayer RT, McCollum TG, Sinisterra X (2004) Putative proteinase inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.). Gene 326:77–86CrossRefPubMedGoogle Scholar
  52. Song HK, Suh SW (1998) Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J Mol Biol 275:347–363CrossRefPubMedGoogle Scholar
  53. Sumikawa JT, Brito MV, Macedo ML, Uchoa AF, Miranda A, Araujo AP, Silva-Lucca RA, Sampaio MU, Oliva ML (2010) The defensive functions of plant inhibitors are not restricted to insect enzyme inhibition. Phytochemistry 71:214–220CrossRefPubMedGoogle Scholar
  54. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  55. Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58CrossRefGoogle Scholar
  56. Theerasilp S, Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263:11536–11539PubMedGoogle Scholar
  57. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  58. Tsukuda S, Gomi K, Yamamoto H, Akimitsu K (2006) Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in Citrus jambhiri lush. Plant Mol Biol 60:125–136CrossRefPubMedGoogle Scholar
  59. Vallee F, Kadziola A, Bourne Y, Juy M, Rodenburg KW, Svensson B, Haser R (1998) Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution. Structure 6:649–659CrossRefPubMedGoogle Scholar
  60. van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122PubMedGoogle Scholar
  61. Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD, Rogers HJ (2002) Cys proteinase gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot 53:233–240CrossRefPubMedGoogle Scholar
  62. Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281CrossRefPubMedGoogle Scholar
  63. Xu FX, Chye ML (1999) Expression of Cys proteinase during developmental events associated with programmed cell death in brinjal. Plant J 17:321–327CrossRefPubMedGoogle Scholar
  64. Xu ZF, Qi WQ, Ouyang XZ, Yeung E, Chye ML (2001) A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Mol Biol 47:727–738CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jorge Maurício Costa Mondego
    • 1
    • 9
    Email author
  • Melina Pasini Duarte
    • 1
  • Eduardo Kiyota
    • 2
    • 3
  • Leandro Martínez
    • 4
  • Sandra Rodrigues de Camargo
    • 1
  • Fernanda P. De Caroli
    • 5
  • Beatriz Santos Capela Alves
    • 6
  • Sandra Maria Carmello Guerreiro
    • 7
  • Maria Luiza Vilela Oliva
    • 5
  • Oliveiro Guerreiro-Filho
    • 8
  • Marcelo Menossi
    • 1
  1. 1.Laboratório de Genoma Funcional Departamento de Genética, Evolução e Bioagentes, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Centro de Biologia Molecular e Engenharia GenéticaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Instituto de QuímicaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  4. 4.Instituto de Física de São CarlosUniversidade de São Paulo (USP), Grupo de CristalografiaSão CarlosBrazil
  5. 5.Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
  6. 6.Laboratório Nacional de Biociências (LNBio)CampinasBrazil
  7. 7.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  8. 8.Centro de Café Alcides CarvalhoInstituto Agronômico de Campinas (IAC)CampinasBrazil
  9. 9.Centro de Pesquisa e Desenvolvimento de Recursos Genéticos VegetaisInstituto Agronômico de Campinas (IAC)CampinasBrazil

Personalised recommendations