, Volume 233, Issue 1, pp 37–48 | Cite as

Polyketide derivatives active against Botrytis cinerea in Gerbera hybrida

  • Satu Koskela
  • Päivi P. Söderholm
  • Miia Ainasoja
  • Tero Wennberg
  • Karel D. Klika
  • Vladimir V. Ovcharenko
  • Irene Kylänlahti
  • Tiina Auerma
  • Jari Yli-Kauhaluoma
  • Kalevi Pihlaja
  • Pia M. VuorelaEmail author
  • Teemu H. TeeriEmail author
Original Article


A previously isolated cDNA molecule from Gerbera hybrida (Asteraceae) codes for a new chalcone synthase-like polyketide synthase, 2-pyrone synthase (2PS). 2PS is able to synthesise 4-hydroxy-6-methyl-2-pyrone (triacetolactone), a putative precursor for gerberin and parasorboside, two abundant glucosides in gerbera. In this study, we show that gerbera plants transformed with the gene for 2PS in an antisense orientation and unable to synthesise gerberin and parasorboside are susceptible to Botrytis cinerea infection. In addition to the preformed glucosides, the transgenic plants also lack several compounds that are induced in control plants when infected with the mould. Some of these induced substances are effective in inhibiting fungal growth both in vitro and in vivo. Two of the phytoalexins were identified as the aglycones of gerberin and trans-parasorboside. The third phytoalexin is a rare coumarin, 4-hydroxy-5-methylcoumarin; however, it is typical of many plants of the sunflower family Asteraceae. The coumarin cannot be structurally derived from either gerberin or parasorboside, but may be derived from a related polyketide intermediate.


Botrytis Gerbera Gerberin Parasorboside Polyketides Transgenic plants 



2-pyrone synthase


Chalcone synthase


Dimethyl sulfoxide




High performance liquid chromatography


Minimal inhibitory concentration


Mass spectroscopy


Nuclear magnetic resonance




Thin layer chromatography



We wish to acknowledge Marja-Leena Lahdenperä from Kemira Agro Oy, for providing the Botrytis cinerea strain, and Professor Kielo Haahtela from the Department of Biosciences, University of Helsinki, for providing Heterobasidium annosum and Rhizoctonia solani mould strains. We also thank Jussi-Pekka Rauha from the Division of Pharmacognosy, University of Helsinki for preliminary mass spectroscopic analyses and advisory discussions. This study was supported by grants from the National Technology Agency, the Academy of Finland (grant no. 4284 to K.P., grant no. 51935 to S.K. and the Programme for Centres of Excellence in Research) and the Finnish Pharmaceutical Society (to P.S.).


  1. Abe I, Oguro S, Utsumi Y, Sano Y, Noguchi H (2005a) Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J Am Chem Soc 127:12709–12716CrossRefPubMedGoogle Scholar
  2. Abe I, Utsumi Y, Oguro S, Morita H, Sano Y, Noguchi H (2005b) A plant type III polyketide synthase that produces pentaketide chromone. J Am Chem Soc 127:1362–1363CrossRefPubMedGoogle Scholar
  3. Appendino G, Cravotto G, Giovenzana GB, Palmisano G (1999) A straightforward entry into polyketide monoprenylated furanocoumarins and pyranocoumarins. J Nat Prod 62:1627–1631CrossRefGoogle Scholar
  4. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110CrossRefPubMedGoogle Scholar
  5. Bacardit R, Moreno-Mañas M (1980) Hydrogenations of triacetic acid lactone. A new synthesis of the carpenter bee (Xylocopa hirsutissima) sex pheromone. Tetrahedron 21:551–554CrossRefGoogle Scholar
  6. Bennet RN, Wallsgrove RM (1994) Secondary metabolism in plant defence-mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  7. Bohlmann F, Grenz M (1975) Über die Inhaltsstoffe von Gerbera piloselloides cass. Chem Ber 108:26–30Google Scholar
  8. Bohlmann E, Zdero C, Franke H (1973) Über die Inhaltsstoffe der Gattung Gerbera. Chem Ber 106:382–387CrossRefPubMedGoogle Scholar
  9. Buston HW, Roy SK (1949) The physiological activity of some simple unsaturated lactones. I. Effect on the growth of certain microorganisms. Arch Biochem 22:1–7PubMedGoogle Scholar
  10. Cardellina JH, Meinwald J (1980) Isolation of parasorbic acid from the cranberry plant, Vaccinium macrocarpon. Phytochemistry 19:2199–2200CrossRefGoogle Scholar
  11. Carreas CW, Khosla C (1998) Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase. Biochemistry 37:2084–2088CrossRefGoogle Scholar
  12. Dixon RA (1999) Isoflavonoids: biochemistry, molecular biology, and biological functions. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry: polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier Science Ltd., Oxford, pp 773–823Google Scholar
  13. Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32:479–501CrossRefGoogle Scholar
  14. Dreier J, Khosla C (2000) Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the β-ketoacyl synthase-chain length factor heterodimer. Biochemistry 39:2088–2095CrossRefPubMedGoogle Scholar
  15. Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633CrossRefPubMedGoogle Scholar
  16. Eckermann S, Schröder G, Schmidt J, Starck D, Edrada RA, Helariutta Y, Elomaa P, Kotilainen M, Kilpeläinen I, Proksch P et al (1998) New pathway to polyketides in plants. Nature 396:387–389CrossRefGoogle Scholar
  17. Elomaa P, Helariutta Y, Kotilainen M, Teeri TH (1996) Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Mol Breed 2:41–50CrossRefGoogle Scholar
  18. Flores-Sancheza IJ, Verpoorte R (2009) Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Biochem 47:167–174CrossRefGoogle Scholar
  19. Forkmann G (1999) Biosynthesis of flavonoids. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry: polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier Science Ltd., Oxford, pp 713–748Google Scholar
  20. Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP et al (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699CrossRefPubMedGoogle Scholar
  21. Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S (2002) Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus. J Biol Chem 277:4628–4635CrossRefPubMedGoogle Scholar
  22. Halim AF, Marwan E-SM, Bohlmann F (1980) 6-hydroxy-4-methoxy-5-methylcoumarin from Gerbera jamesonii. Phytochemistry 19:2496Google Scholar
  23. He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702CrossRefPubMedGoogle Scholar
  24. Helariutta Y, Elomaa P, Kotilainen M, Seppänen P, Teeri TH (1993) Cloning of the cDNA for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gebera hybrida var. Regina (Compositae). Plant Mol Biol 22:183–193CrossRefPubMedGoogle Scholar
  25. Helariutta Y, Elomaa P, Kotilainen M, Griesbach R, Schröder J, Teeri TH (1995) Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in G. hybrida (Asteraceae). Plant Mol Biol 28:47–60CrossRefPubMedGoogle Scholar
  26. Helariutta Y, Kotilainen M, Elomaa P, Kalkkinen N, Bremer K, Teeri TH, Albert V (1996) Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution of substrate change and catalytic simplification. Proc Natl Acad Sci USA 93:9033–3038Google Scholar
  27. Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562CrossRefPubMedGoogle Scholar
  28. Hrazdina G, Wagner GJ (1985) The biochemistry of plant phenolics. Compartmentation of plant phenolic compounds: sites of synthesis and accumulation. In: Van Sumere CF, Lea PJ (eds) Annual proceedings of the phytochemical society of Europe. Clarendon Press, Oxford, pp 119–133Google Scholar
  29. Inoue T, Toyonaga T, Nagumo S, Nagai M (1989) Biosynthesis of 4-hydroxy-5-methylcoumarin in a Gerbera jamesonii hybrid. Phytochemistry 28:2329–2330CrossRefGoogle Scholar
  30. Jez JM, Austin MB, Ferrer J-L, Bowman M, Schröder J, Noel JP (2000) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7:919–930CrossRefPubMedGoogle Scholar
  31. Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimyzu B (2008) Scopoletin is synthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 88:989–999CrossRefGoogle Scholar
  32. Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A (2008) Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark lands accumulating hypericins. FEBS J 275:4329–4342CrossRefPubMedGoogle Scholar
  33. Klika KD, Bernát J, Imrich J, Chomča I, Sillanpää R, Pihlaja K (2001) Unexpected formation of a spiro acridine and fused ring system from the reaction between an N-acridinylmethyl-substituted thiourea and bromoacetonitrile under basic conditions. J Org Chem 66:4416–4418CrossRefPubMedGoogle Scholar
  34. Kodama O, Suzuki T, Miyakawa J, Akatsuka T (1988) Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric Biol Chem 52:2469–2473Google Scholar
  35. Kúc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297CrossRefPubMedGoogle Scholar
  36. Laatikainen R, Niemitz M, Weber U, Sundelin J, Hassinen T, Vepsäläinen J (1996) General strategies for total-lineshape-type spectral analysis of NMR spectra using integral-transform iterator. J Magn Res Ser A 120:1–10CrossRefGoogle Scholar
  37. Lechtenberg M, Nahrstedt A (1999) Cyanogenic glycosides. In: Ikan R (ed) Naturally occurring glycosides. Wiley, Chichester, pp 147–191Google Scholar
  38. Liu B, Raeth T, Beuerie T, Beerhues L (2010) A novel 4-hydroxycoumarin biosynthetic pathway. Plant Mol Biol 72:17–25CrossRefPubMedGoogle Scholar
  39. Luck E (1990) Food applications of sorbic acid and its salts. Food Addit Contam 7:711–715PubMedGoogle Scholar
  40. Maas JL (1998) Compendium of strawberry diseases. American Phytopathological Society Press, USAGoogle Scholar
  41. Mitchell-Olds T, Gershenzon J, Baldwin I, Boland W (1998) Chemical ecology in the molecular era. Trends Plant Sci 3:361–365CrossRefGoogle Scholar
  42. Moewus F, Schader E (1951) Die Wirkung von Cumarin und Parasorbinsäure auf das Austriben von Kartoffelknollen. Z Naturforsch 6b:112–115Google Scholar
  43. Murray RDH (1997) Naturally occurring plant coumarins. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm Ch (eds) Progress in the chemistry of organic natural products. Springer, New York, pp 1–199Google Scholar
  44. Nagumo S, Imamura K, Inoue T, Nagai M (1985) Cyanogenic glycosides and 4-hydroxycoumarin glycosides from Gerbera jamesonii hybrida. Chem Pharm Bull 33:4803–4906Google Scholar
  45. Nagumo S, Toyonaga T, Inoue T, Nagai M (1989) New glucosides of a 4-hydroxy-5-methylcoumarin and a dihydro-α-pyrone from Gerbera jamesonii hybrida. Chem Pharm Bull 37:2621–2623Google Scholar
  46. Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134CrossRefPubMedGoogle Scholar
  47. Numata A, Takahashi C, Fujiki R, Kitano E, Kitajima A, Takemura T (1990) Plant constitutents biologically active to insects. VI. Antifeedants for larvae of the yellow butterfly Eurema hecabe mandarina in Osmunda japonica. Chem Pharm Bull 28:2862–2865Google Scholar
  48. Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305CrossRefPubMedGoogle Scholar
  49. Oster U, Blos I, Rüdiger W (1987) Natural Inhibitors of germination and growth IV compounds from fruit and seeds of mountain ash (Sorbus aucuparia). Z Naturforsch 42c:1179–1184Google Scholar
  50. Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928CrossRefPubMedGoogle Scholar
  51. Penningsfeld F, Forchthammer L (1980) Gerbera. Eugen Ulmer & Co, StutgartGoogle Scholar
  52. Proksch P, Rodriguez E (1983) Chromenes and benzofurans of the Asteraceae, their chemistry and biological significance. Phytochemistry 22:2335–2348CrossRefGoogle Scholar
  53. Pyysalo H, Kuusi T (1971) The taste in the berries of mountain ash. The glycosidic precursor of sorbic acid. Suomen kemistilehti, pp 393–396Google Scholar
  54. Shen C-C, Chang Y-S, Ho L-K (1993) Nuclear magnetic resonance studies of 5, 7-dihydroxyflavonoids. Phytochemistry 34:843–845CrossRefGoogle Scholar
  55. Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171CrossRefPubMedGoogle Scholar
  56. Trossat C, Rathinasabapathi B, Weretilnyk EA, Shen TL, Huang ZH, Gage DA, Hanson AD (1998) Salinity promotes accumulation of 3-dimethylsulfoniopropionate and its precursor S-methylmethionine in chloroplasts. Plant Physiol 116:165–171CrossRefPubMedGoogle Scholar
  57. Tschesche R, Hoppe H-J, Snatzke G, Wulff G, Fehlhaber H-W (1971) Über Parasorbosid, den glykosidischen Vorläufer der Parasorbinsäure, aus Vogelbeeren. Chem Ber 104:1420–1428CrossRefGoogle Scholar
  58. Van Loo P, De Bruyn A, Budĕšinský M (1986) Reinvestigation of the structural assignment of signals in the 1H and 13C NMR spectra of the flavone apigenin. Magn Reson Chem 24:879–882CrossRefGoogle Scholar
  59. VanEtten H, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalxins versus phytoanticipins. Plant Cell 6:1191–1192CrossRefPubMedGoogle Scholar
  60. Wennberg T, Rauha J-P, Vuorela H (2001) Computer assisted scale up from analytical HPLC to preparative MPLC for the separation of phenolic compounds. Chromatographia 53(Suppl):240–245CrossRefGoogle Scholar
  61. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19CrossRefPubMedGoogle Scholar
  62. Yrjönen T, Vuorela P, Klika KD, Pihlaja K, Teeri TH, Vuorela H (2002) Application of a prototype rotation planar column instrument to the extraction and separation of gerberin and parasorboside from Gerbera hybrida. Phytochem Anal 13:349–353CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Satu Koskela
    • 1
  • Päivi P. Söderholm
    • 2
  • Miia Ainasoja
    • 3
  • Tero Wennberg
    • 2
  • Karel D. Klika
    • 4
  • Vladimir V. Ovcharenko
    • 4
  • Irene Kylänlahti
    • 5
  • Tiina Auerma
    • 1
  • Jari Yli-Kauhaluoma
    • 5
  • Kalevi Pihlaja
    • 4
  • Pia M. Vuorela
    • 6
    Email author
  • Teemu H. Teeri
    • 3
    • 1
    Email author
  1. 1.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Division of Pharmaceutical Biology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.Structural Chemistry Group, Department of ChemistryUniversity of TurkuTurkuFinland
  5. 5.Division of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  6. 6.Pharmaceutical Sciences, Department of BiosciencesÅbo Akademi UniversityTurkuFinland

Personalised recommendations