Advertisement

Planta

, Volume 232, Issue 3, pp 691–699 | Cite as

Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta

  • Andrea Ilg
  • Qiuju Yu
  • Patrick Schaub
  • Peter Beyer
  • Salim Al-Babili
Original Article

Abstract

Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

Keywords

Apocarotenoids Carotenoids Carotenoid cleavage dioxygenase Golden Rice Endosperm 

Abbreviations

CCD1

Carotenoid cleavage dioxygenase 1

GR

Golden Rice

Gt1

Glutelin 1 promoter

Notes

Acknowledgments

This work was funded by The HarvestPlus research consortium (http://www.harvestplus.org) and by the Deutsche Forschungsgemeinschaft (DFG) Grant AL 892/1-4. We are indebted to Dr. Rhodora Aldemita for valuable discussions.

Supplementary material

425_2010_1205_MOESM1_ESM.pdf (15 kb)
Supplementary material 1 (PDF 14 kb)

References

  1. Akiyama K (2007) Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci Biotechnol Biochem 71:1405–1414CrossRefPubMedGoogle Scholar
  2. Al-Babili S, Beyer P (2005) Golden Rice—five years on the road—five years to go? Trends Plant Sci 10:565–573CrossRefPubMedGoogle Scholar
  3. Al-Babili S, Hoa TT, Schaub P (2006) Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in Golden Rice. J Exp Bot 57:1007–1014CrossRefPubMedGoogle Scholar
  4. Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617CrossRefGoogle Scholar
  5. Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416:289–296CrossRefPubMedGoogle Scholar
  6. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562CrossRefPubMedGoogle Scholar
  7. Auldridge ME, McCarty DR, Klee HJ (2006a) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321CrossRefPubMedGoogle Scholar
  8. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006b) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993CrossRefPubMedGoogle Scholar
  9. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel signaling molecule. Curr Biol 14:1232–1238CrossRefPubMedGoogle Scholar
  10. Bouvier F, Dogbo O, Camara B (2003a) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 30:2089–2091CrossRefGoogle Scholar
  11. Bouvier F, Suire C, Mutterer J, Camara B (2003b) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62CrossRefPubMedGoogle Scholar
  12. Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194CrossRefPubMedGoogle Scholar
  13. Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230CrossRefPubMedGoogle Scholar
  14. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583CrossRefPubMedGoogle Scholar
  15. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738CrossRefPubMedGoogle Scholar
  16. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34CrossRefPubMedGoogle Scholar
  17. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 4 B(4):e350Google Scholar
  18. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89PubMedGoogle Scholar
  19. Floss DS, Walter MH (2009) Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signal Behav 4:172–175CrossRefPubMedGoogle Scholar
  20. Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH (2008) RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148:1267–1282CrossRefPubMedGoogle Scholar
  21. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265CrossRefPubMedGoogle Scholar
  22. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097CrossRefPubMedGoogle Scholar
  23. Fujisawa M, Watanabe M, Choi SK, Teramoto M, Ohyama K, Misawa N (2008) Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 105:636–641CrossRefPubMedGoogle Scholar
  24. Gang DR (2005) Evolution of flavors and scents. Annu Rev Plant Biol 56:301–325CrossRefPubMedGoogle Scholar
  25. García-Limones C, Schnäbele K, Blanco-Portales R, Luz Bellido M, Caballero JL, Schwab W, Muñoz-Blanco J (2008) Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem 56:9277–9285CrossRefPubMedGoogle Scholar
  26. Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–148CrossRefPubMedGoogle Scholar
  27. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194CrossRefPubMedGoogle Scholar
  28. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218CrossRefPubMedGoogle Scholar
  29. Hoa TT, Al-Babili S, Schaub P, Potrykus I, Beyer P (2003) Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol 133:161–169CrossRefPubMedGoogle Scholar
  30. Huang FC, Molnár P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022CrossRefPubMedGoogle Scholar
  31. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A et al (2006) Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67:1579–1589CrossRefPubMedGoogle Scholar
  32. Ilg A, Beyer P, Al-Babili S (2009) Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J 276:736–747CrossRefPubMedGoogle Scholar
  33. Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M (2006) The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J Exp Bot 57:2153–2164CrossRefPubMedGoogle Scholar
  34. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 20:3142–3148CrossRefGoogle Scholar
  35. Livak KJ (1997) User Bulletin No. 2: ABI PRISM 7700 Sequence Detection System. PE Applied Biosystems, Foster City, CA, USA, pp 11–15Google Scholar
  36. Marasco EK, Vay K, Schmidt-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593CrossRefPubMedGoogle Scholar
  37. Mathieu S, Terrier N, Procureur J, Bigey F, Gunata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56:2721–2731CrossRefPubMedGoogle Scholar
  38. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170CrossRefPubMedGoogle Scholar
  39. Moise AR, von Lintig J, Palczewski K (2005) Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends Plant Sci 10:178–186CrossRefPubMedGoogle Scholar
  40. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201CrossRefPubMedGoogle Scholar
  41. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:429–430CrossRefGoogle Scholar
  42. Potrykus I, Harms CT, Lörz H (1979) Callus formation from cell culture protoplasts of corn (Zea mays L.). Theor Appl Genet 54:209–214CrossRefGoogle Scholar
  43. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263CrossRefPubMedGoogle Scholar
  44. Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669CrossRefPubMedGoogle Scholar
  45. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419CrossRefPubMedGoogle Scholar
  46. Rubio A, Rambla JL, Santaella M, Gómez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825CrossRefPubMedGoogle Scholar
  47. Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024CrossRefPubMedGoogle Scholar
  48. Scherzinger D, Al-Babili S (2008) In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight. Mol Microbiol 69:231–244CrossRefPubMedGoogle Scholar
  49. Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S (2006) Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 398:361–369CrossRefPubMedGoogle Scholar
  50. Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146CrossRefPubMedGoogle Scholar
  51. Schmidt H, Kurtzer R, Eisenreich W, Schwab W (2006) The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 281:9845–9851CrossRefPubMedGoogle Scholar
  52. Schwartz SH, Qin X, Zeevaart JAD (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211CrossRefPubMedGoogle Scholar
  53. Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945CrossRefPubMedGoogle Scholar
  54. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412CrossRefPubMedGoogle Scholar
  55. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylaceton. Plant J 40:882–892CrossRefPubMedGoogle Scholar
  56. Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E et al (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514CrossRefPubMedGoogle Scholar
  57. Soni R, Murray JA (1994) Isolation of intact DNA and RNA from plant tissues. Anal Biochem 218:474–476CrossRefPubMedGoogle Scholar
  58. Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FW, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801CrossRefPubMedGoogle Scholar
  59. Timmermans MC, Brutnell TP, Becraft PW (2004) The 46th Annual Maize Genetics Conference. Unlocking the secrets of the maize genome. Plant Physiol 136:2633–2640CrossRefPubMedGoogle Scholar
  60. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200CrossRefPubMedGoogle Scholar
  61. Vogel JT, Tan BC, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283:11364–11373CrossRefPubMedGoogle Scholar
  62. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311CrossRefPubMedGoogle Scholar
  63. Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578CrossRefPubMedGoogle Scholar
  64. Wünn J, Klöti A, Burkhardt PK, Ghosh Biswas GC, Launis K, Iglesias VA, Potrykus I (1996) Transgenic indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Biotechnology 14:171–176CrossRefPubMedGoogle Scholar
  65. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305CrossRefPubMedGoogle Scholar
  66. Yoshida S, Forno DA, Cook JH, Gomez KA (1976) Routine procedures for growing rice plants in culture solution. In: Yoshida S, Forno DA, Cook JH, Gomez KA (eds) Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Philippines, pp 61–66Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrea Ilg
    • 1
  • Qiuju Yu
    • 1
  • Patrick Schaub
    • 1
  • Peter Beyer
    • 1
  • Salim Al-Babili
    • 1
  1. 1.Faculty of Biology, Institute of Biology IIAlbert-Ludwigs University of FreiburgFreiburgGermany

Personalised recommendations