, Volume 232, Issue 3, pp 555–566 | Cite as

Arabidopsis DDB1a and DDB1b are critical for embryo development

  • Anne Bernhardt
  • Sutton Mooney
  • Hanjo HellmannEmail author
Original Article


DNA DAMAGED BINDING PROTEIN 1 (DDB1) is a highly conserved protein of around 125 kDa. It serves as a substrate adaptor subunit to a CUL4-based E3 ubiquitin ligase within the ubiquitin proteasome pathway. However, based on a set of three beta-propellers, the protein is able to mediate various protein–protein interactions, suggesting that it participates in many developmental and physiological processes in the plant. Arabidopsis encodes for two closely related DDB1 proteins, named DDB1a and DDB1b. While loss-of DDB1a does not severely affect development, loss-of DDB1b has been reported to result in an embryo lethal phenotype. Here we describe two novel ddb1b T-DNA insertion mutants that are not embryo lethal, which we utilized as genetic tools to dissect DDB1b from DDB1a function. Information generated by these studies showed that the C-terminal part of the DDB1 proteins is critical for specific protein–protein interactions. In addition, we demonstrated that DDB1a, like DDB1b, is critical for embryo development, and that both proteins have distinct functions in whole plant development.


Arabidopsis DDB1 Embryo development Plant development 





DDB1-binding WD-40-box



















We would like to thank the Deutsche Forschungsgemeinschaft (DFG grant HE3224/7-1 to H.H.) and Washington State University for supporting this project.

Supplementary material

425_2010_1195_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 108 kb)
425_2010_1195_MOESM2_ESM.pdf (241 kb)
Supplementary material 2 (PDF 240 kb)
425_2010_1195_MOESM3_ESM.pdf (370 kb)
Supplementary material 3 (PDF 369 kb)


  1. Al Khateeb WM, Schroeder DF (2007) DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development. Genetics 176:231–242CrossRefPubMedGoogle Scholar
  2. Al Khateeb WM, Schroeder DF (2009) Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance. Plant Mol Biol 70:371–383CrossRefPubMedGoogle Scholar
  3. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657CrossRefPubMedGoogle Scholar
  4. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593PubMedGoogle Scholar
  5. Baek IS, Park HY, You MK, Lee JH, Kim JK (2008) Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol Cells 26:368–372PubMedGoogle Scholar
  6. Baurle I, Dean C (2008) Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS ONE 3:e2733CrossRefPubMedGoogle Scholar
  7. Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin MJ, Benvenuto G, Bowler C, Genschik P, Hellmann H (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J 47:591–603CrossRefPubMedGoogle Scholar
  8. Biedermann S, Hellmann H (2010) The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. Plant J 62:404–415CrossRefPubMedGoogle Scholar
  9. Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, Zhang Y, Li J, Lee JH, Zhu D, Deng XW (2010) Arabidopsis CULLIN4-Damaged DNA binding protein 1 interacts with constitutively photomorphogenic1-suppressor of phya complexes to regulate photomorphogenesis and flowering time. Plant Cell 22:108–123CrossRefPubMedGoogle Scholar
  10. Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567CrossRefPubMedGoogle Scholar
  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  12. Flores-Perez U, Perez-Gil J, Closa M, Wright LP, Botella-Pavia P, Phillips MA, Ferrer A, Gershenzon J, Rodriguez-Concepcion M (2010) Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in arabidopsis. Mol Plant 3:101–112CrossRefPubMedGoogle Scholar
  13. He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754CrossRefPubMedGoogle Scholar
  14. He YJ, McCall CM, Hu J, Zeng Y, Xiong Y (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20:2949–2954CrossRefPubMedGoogle Scholar
  15. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797CrossRefPubMedGoogle Scholar
  16. Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302CrossRefPubMedGoogle Scholar
  17. Higa LA, Zhang H (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2:5CrossRefPubMedGoogle Scholar
  18. Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489CrossRefPubMedGoogle Scholar
  19. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  20. Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171CrossRefPubMedGoogle Scholar
  21. Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26:775–780CrossRefPubMedGoogle Scholar
  22. Lee JH, Terzaghi W, Gusmaroli G, Charron JB, Yoon HJ, Chen H, He YJ, Xiong Y, Deng XW (2008) Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20:152–167CrossRefPubMedGoogle Scholar
  23. Li J, Wang QE, Zhu Q, El-Mahdy MA, Wani G, Praetorius-Ibba M, Wani AA (2006a) DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res 66:8590–8597CrossRefPubMedGoogle Scholar
  24. Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006b) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117CrossRefPubMedGoogle Scholar
  25. Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J, Grossniklaus U, Kohler C (2006) Different polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952CrossRefPubMedGoogle Scholar
  26. Molinier J, Lechner E, Dumbliauskas E, Genschik P (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4:e1000093CrossRefPubMedGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Nixdorf M, Hoecker U (2010) SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Planta 231:825–833CrossRefPubMedGoogle Scholar
  29. Sambrook J, Russell WR (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  30. Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472CrossRefPubMedGoogle Scholar
  31. Scrima A, Konickova R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thoma NH (2008) Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135:1213–1223CrossRefPubMedGoogle Scholar
  32. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590CrossRefPubMedGoogle Scholar
  33. Weber H, Bernhardt A, Dieterle M, Hano P, Mutlu A, Estelle M, Genschik P, Hellmann H (2005) Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiol 137:83–93CrossRefPubMedGoogle Scholar
  34. Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289–4299PubMedGoogle Scholar
  35. Wittschieben BO, Wood RD (2003) DDB complexities. DNA Repair (Amst) 2:1065–1069CrossRefGoogle Scholar
  36. Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717CrossRefPubMedGoogle Scholar
  37. Zhang Y, Schroeder DF (2010) Effect of overexpression of Arabidopsis damaged DNA-binding protein 1A on De-etiolated 1. Planta 231:337–348CrossRefPubMedGoogle Scholar
  38. Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anne Bernhardt
    • 1
    • 2
  • Sutton Mooney
    • 2
  • Hanjo Hellmann
    • 2
    Email author
  1. 1.Freie UniversitätBerlinGermany
  2. 2.Washington State UniversityPullmanUSA

Personalised recommendations