Advertisement

Planta

, Volume 231, Issue 6, pp 1439–1458 | Cite as

Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots

  • Mona B. Damaj
  • Siva P. Kumpatla
  • Chandrakanth Emani
  • Phillip D. Beremand
  • Avutu S. Reddy
  • Keerti S. Rathore
  • Marco T. Buenrostro-Nava
  • Ian S. Curtis
  • Terry L. Thomas
  • T. Erik Mirkov
Original Article

Abstract

Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Ο-METHYLTRANSFERASE (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the β-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both Pro DIR16 :GUS and Pro OMT :GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. Pro DIR16 and Pro OMT will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.

Keywords

DIRIGENT and O-METHYLTRANSFERASE genes Jasmonates Rice Salicylic acid Stem-regulated promoters Sugarcane 

Abbreviations

aRNA

Amplified RNA

BAC

Bacterial artificial chromosome

CaMV35S

Cauliflower mosaic virus 35S promoter

GUS

β-Glucuronidase

JA

Jasmonic acid

MeJA

Methyl jasmonate

MS

Murashige and Skoog

MU

4-Methylumbelliferone

PCR

Polymerase chain reaction

Pro

Promoter

qRT-PCR

Quantitative RT-PCR

SA

Salicylic acid

SHDIR

Saccharum hybrid dirigent

SHOMT

Saccharum hybrid O-methyltransferase

UBI

Ubiquitin

Notes

Acknowledgments

We are grateful to members of the Thomas Laboratory at Texas A&M University for discussions of results, data analysis and support. We specifically acknowledge Dr. Andrew Tag and Rick Hammer for bioinformatics support. We also thank Dr. Madhurababu Kunta (Citrus Center, Texas A&M University-Kingsville) for assistance in photography, and Brennick Langston (Texas AgriLife Research, Texas A&M System) for sequence submission to NCBI and determination of the three-dimensional structure of sugarcane O-methyltransferase. This work was supported by grants from the Texas Grain and Grass Gene Initiative Program (No. 06-0001), the Rio Grande Valley Sugar Growers Cooperative and Texas AgriLife Research, Texas A&M System.

Supplementary material

425_2010_1138_MOESM1_ESM.doc (39 kb)
Supplementary material S1 (DOC 39 kb)
425_2010_1138_MOESM2_ESM.doc (36 kb)
Supplementary material S2 (DOC 36 kb)
425_2010_1138_MOESM3_ESM.doc (100 kb)
Supplementary material S3 (DOC 100 kb)
425_2010_1138_MOESM4_ESM.pdf (6.6 mb)
Supplementary material S4 (PDF 6725 kb)
425_2010_1138_MOESM5_ESM.jpg (317 kb)
Supplementary material S5 (JPG 316 kb)
425_2010_1138_MOESM6_ESM.pdf (619 kb)
Supplementary material S6 (PDF 619 kb)

References

  1. Adler E (1977) Lignin chemistry: past, present and future. Wood Sci Technol 11:169–218CrossRefGoogle Scholar
  2. Albert HH, Wei H, (2003) Promoter of the sugarcane UBI4 gene. US Patent No. 6, 638,766Google Scholar
  3. Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617CrossRefGoogle Scholar
  4. Aldwin MA, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294CrossRefGoogle Scholar
  5. Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu Y-P, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194PubMedCrossRefGoogle Scholar
  6. Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283PubMedCrossRefGoogle Scholar
  7. Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477CrossRefGoogle Scholar
  8. Bailey MJ, Beremand PD, Hammer R, Bell-Pedersen D, Thomas TL, Cassone VM (2003) Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol Endocrinol 17:2084–2095PubMedCrossRefGoogle Scholar
  9. Baumann K, De Paolis A, Costantino P, Gualberti G (1999) DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11:323–334PubMedCrossRefGoogle Scholar
  10. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  11. Bower NI, Casu RE, Maclean DJ, Reverter A, Chapman SC, Manners JM (2005) Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci 168:761–772CrossRefGoogle Scholar
  12. Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326PubMedCrossRefGoogle Scholar
  13. Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role of the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032PubMedCrossRefGoogle Scholar
  14. Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897PubMedCrossRefGoogle Scholar
  15. Capellades M, Torres MA, Bastisch I, Stiefel V, Vignols F, Bruce WB, Peterson D, Puigdomènech P, Rigau J (1996) The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues. Plant Mol Biol 31:307–322PubMedCrossRefGoogle Scholar
  16. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517PubMedCrossRefGoogle Scholar
  17. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedCrossRefGoogle Scholar
  18. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689PubMedCrossRefGoogle Scholar
  19. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668Google Scholar
  20. Collazo P, Montoliu L, Puigdomènech P, Rigau J (1992) Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol 20:857–867PubMedCrossRefGoogle Scholar
  21. Connell JP, Pammi S, Iqbal MJ, Huizinga T, Reddy AS (1998) A high through-put procedure for capturing microsatellites from complex plant genomes. Plant Mol Biol Rep 16:341–349CrossRefGoogle Scholar
  22. Culley DE, Horovitz D, Hadwiger LA (1995) Molecular characterization of disease-resistance response gene DRR206-d from Pisum sativum (L.). Plant Physiol 107:301–302PubMedCrossRefGoogle Scholar
  23. da Costa e Silva O, Klein L, Schmelzer E, Trezzini GF, Hahlbrock K (1993) BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense responses. Plant J 4:125–135PubMedCrossRefGoogle Scholar
  24. Damaj MB, Beremand PD, Buenrostro-Nava MT, Riedel B, Molina JJ, Kumpatla SP, Thomas TL, Mirkov TE (2009) Reproducible RNA preparation from sugarcane and citrus for functional genomic applications. Intl J Plant Genomics 765367:13Google Scholar
  25. Damaj MB, Beremand PD, Buenrostro-Nava MT, Ivy J, Kumpatla SP, Jifon J, Thomas TL, Mirkov TE (2010) Isolating promoters of multigene families from complex genomes by PCR-based walking in BAC DNA. (submitted to Genome)Google Scholar
  26. Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461PubMedCrossRefGoogle Scholar
  27. Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective biomolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366PubMedCrossRefGoogle Scholar
  28. Denton FR (1998) Beetle juice. Science 281:1285PubMedCrossRefGoogle Scholar
  29. Dwivedi UN, Campbell WH, Yu J, Datla RSS, Bugos RC, Chiang VL, Podila GK (1994) Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol 26:61–71PubMedCrossRefGoogle Scholar
  30. Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192CrossRefGoogle Scholar
  31. Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue- and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol 27:6651–6667CrossRefGoogle Scholar
  32. Fornalé S, Sonbol F-M, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823PubMedCrossRefGoogle Scholar
  33. Fristensky B, Horovitz D, Hadwiger LA (1988) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11:713–715CrossRefGoogle Scholar
  34. Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374Google Scholar
  35. Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151PubMedCrossRefGoogle Scholar
  36. Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228PubMedCrossRefGoogle Scholar
  37. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapyl esters. Plant Mol Biol 51:973–989PubMedCrossRefGoogle Scholar
  38. Groenewald J-H, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92PubMedCrossRefGoogle Scholar
  39. Guo D, Chen F, Inoue K, Blount J, Dixon R (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88PubMedCrossRefGoogle Scholar
  40. Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357PubMedCrossRefGoogle Scholar
  41. Hauffe KD, Lee SP, Subramaniam R, Douglas CJ (1993) Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco. Plant J 4:235–253PubMedCrossRefGoogle Scholar
  42. He C, Lin Z, McElroy D, Wu R (2009) Identification of a rice Actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol J 7:227–239PubMedCrossRefGoogle Scholar
  43. Held BM, Wang H, John I, Wurtele ES, Colbert JT (1993) An mRNA coding for an o-methyltransferase accumulates preferentially in maize roots and is located predominantly in the region of the endodermis. Plant Physiol 102:1001–1008PubMedCrossRefGoogle Scholar
  44. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  45. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  46. Hiroyuki K, Terauchi R (2008) Regulation of expression of rice thaumatin-like protein: inducibility by elicitor requires promoter W-box elements. Plant Cell Rep 27:1521–1528PubMedCrossRefGoogle Scholar
  47. Hood EE, Gelvin SB, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants (EHA105). Transgenic Res 2:208–218CrossRefGoogle Scholar
  48. Hwang S-H, Lee IA, Yie SW, Hwang D-J (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150PubMedCrossRefGoogle Scholar
  49. Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198PubMedCrossRefGoogle Scholar
  50. Inoue K, Sewalt VJH, Balance M, Ni W, Stürzer C, Dixon RA (1998) Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Plant Physiol 117:761–770PubMedCrossRefGoogle Scholar
  51. Ito H, Hiraqa S, Tsuqawa H, Matsui H, Honma M, Otsuki Y, Murakami T, Ohashi Y (2000) Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci 155:85–100PubMedCrossRefGoogle Scholar
  52. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  53. Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674PubMedCrossRefGoogle Scholar
  54. Jouanin L, Goujon T, De Nadaï V, Martin MT, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1373PubMedCrossRefGoogle Scholar
  55. Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström K-O (2007) Improved drought tolerance without undesired effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386PubMedCrossRefGoogle Scholar
  56. Kim MK, Jeon J-H, Davin LB, Lewis NG (2002a) Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications. Phytochemistry 61:311–322PubMedCrossRefGoogle Scholar
  57. Kim MK, Jeon J-H, Fujita M, Davin LB, Lewis NG (2002b) The western red cedar (Thuja plicata) 8–8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214PubMedCrossRefGoogle Scholar
  58. Kuroda H (1983) Comparative studies on O-methyltransferases involved in lignin biosynthesis. Wood Res 69:91–135Google Scholar
  59. Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein-DNA complex formation. Plant J 23:663–676PubMedCrossRefGoogle Scholar
  60. Lapierre C, Tollier MT, Monties B (1988) Occurrence of additional monomeric units in the lignins from internodes of a brown-midrib mutant of maize bm3. C R Acad Sci Paris 307:723–728Google Scholar
  61. Lee JE, Vogt T, Hause B, Löbler M (1997) Methyl jasmonate induces an O-methyltransferase in barley. Plant Cell Physiol 38:851–862PubMedGoogle Scholar
  62. Lee J-T, Prasad V, Yang P-T, Wu J-F, David Ho T-H, Charng Y-Y, Chan M-T (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190CrossRefGoogle Scholar
  63. Lee A, Cho K, Jang S, Rakwal R, Iwahashi H, Agrawal GK, Shim J, Han O (2004) Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem Biophys Res Commun 318:734–738PubMedCrossRefGoogle Scholar
  64. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327PubMedCrossRefGoogle Scholar
  65. Liu Z-Z, Wang J-L, Huang X, Xu W-H, Liu Z-M, Fang R-X (2003) The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216:824–833PubMedGoogle Scholar
  66. Liu C-J, Deavours BE, Richard SB, Ferrer JL, Blount JW, Huhman D, Dixon RA, Noel JP (2006) Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 18:3656–3669PubMedCrossRefGoogle Scholar
  67. Lu J, Sivamani E, Li X, Qu R (2008) Activity of the 5′ regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. Plant Cell Rep 27:1587–1600PubMedCrossRefGoogle Scholar
  68. Luo H, Lee J-Y, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408PubMedCrossRefGoogle Scholar
  69. Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171PubMedCrossRefGoogle Scholar
  70. McElroy D, Wu R (1997) Rice actin gene and promoter. US Patent No. 5, 641,876Google Scholar
  71. McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171PubMedCrossRefGoogle Scholar
  72. Mirkov TE, Damaj MB, Kumpatla SP, Reddy A, Thomas TL, Rathore KS, Emani C (2008) Stem-regulated, plant defense promoter and uses thereof in tissue-specific expression in monocots. US Patent 7,323,622Google Scholar
  73. Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman JL, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136:4023–4036PubMedCrossRefGoogle Scholar
  74. Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploidy crop species. Planta 229:549–558PubMedCrossRefGoogle Scholar
  75. Ni W, Paiva NL, Dixon RA (1994) Reduced lignin in transgenic plants containing a caffeic acid O-methyltransferase antisense gene. Transgenic Res 3:120–126CrossRefGoogle Scholar
  76. Nomura M, Katayama K, Nishimura A, Ishida Y, Ohta S, Komari T, Miyao-Tokutomi M, Tajima S, Matsuoka M (2000) The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Plant Mol Biol 44:99–106PubMedCrossRefGoogle Scholar
  77. Opalka N, Brugidou C, Bonneau C, Nicole M, Yeager M, Fauquet C (1998) Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc Natl Acad Sci USA 95:3323–3328PubMedCrossRefGoogle Scholar
  78. Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM (2003) Characterization of PtMYB1, an R2R3-MYB from pine xylem. Plant Mol Biol 53:597–608PubMedCrossRefGoogle Scholar
  79. Pichon M, Courbou I, Beckert M, Boudet A-M, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-coa reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676PubMedCrossRefGoogle Scholar
  80. Pino M-T, Skinner JS, Park E-J, Jeknic Z, Hayes PM, Thomashow MF, Chen TH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604PubMedCrossRefGoogle Scholar
  81. Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Mila I, Lapierre C, Rigau J, Puigdomènech P, Jauneau A, Digonnet C, Boudet A-M, Goffner D, Pichon M (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685PubMedCrossRefGoogle Scholar
  82. Potier B, Baburam C, Jacob R, Huckett BI (2008a) Stem-specific promoters from sorghum and maize for use in sugarcane. Proc S Afr Sug Technol Ass 81:508–512Google Scholar
  83. Potier B, Snyman SJ, Jacob R, Dheopursad D, Hucket BI (2008b) Strategies for the alleviation of promoter silencing in sugarcane. Proc S Afr Sug Technol Ass 81:482–485Google Scholar
  84. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  85. Ralph S, Park JY, Bohlman J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery phylogeny and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40PubMedCrossRefGoogle Scholar
  86. Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: extended gene discovery, phylogeny and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991PubMedCrossRefGoogle Scholar
  87. Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523PubMedCrossRefGoogle Scholar
  88. Ruelland E, Campalans A, Selman-Housein G, Puigdomènech P, Rigau J (2003) Cellular and subcellular localization of the lignin biosynthetic enzymes caffeic acid-O-methyltransferase, cinnamyl alcohol dehydrogenase and cinnamoyl-coenzyme A reductase in two monocots, sugarcane and maize. Physiol Plant 117:93–99CrossRefGoogle Scholar
  89. Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das S (2007) Characterization of vascular-specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta 226:429–442PubMedCrossRefGoogle Scholar
  90. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 7.42–7.45Google Scholar
  91. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595PubMedCrossRefGoogle Scholar
  92. Selman-Housein G, López MA, Hernandez D, Civardi L, Miranda F, Rigau J, Puigdomènech P (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci 143:163–171CrossRefGoogle Scholar
  93. Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319PubMedCrossRefGoogle Scholar
  94. Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424CrossRefGoogle Scholar
  95. Toquin V, Grausem B, Geoffroy P, Legrand M (2003) Structure of the tobacco acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inducibility by various stimuli. Plant Mol Biol 52:495–509PubMedCrossRefGoogle Scholar
  96. Tornero P, Conejero V, Vera P (1996) Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development. Plant J 9:639–648PubMedCrossRefGoogle Scholar
  97. Tsai CJ, Popko JL, Mielke MR, Hu WJ, Podila GK, Chiang VL (1998) Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol 117:101–112PubMedCrossRefGoogle Scholar
  98. Tzafrir I, Torbert KA, Lockhart BE, Somers DA, Olszewski NE (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Mol Biol 38:347–356PubMedCrossRefGoogle Scholar
  99. Van der Geest AHM, Hall TC (1996) A 68 bp element of the β-phaseolin promoter functions as a seed-specific enhancer. Plant Mol Biol 32:579–588PubMedCrossRefGoogle Scholar
  100. Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Lepie JC, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid 5-hydroxyferulic acid O-methyltransferase. Plant J 8:855–864Google Scholar
  101. Wang Y, Fristensky B (2001) Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Mol Breed 8:263–271CrossRefGoogle Scholar
  102. Wei H, Albert HH, Moore PH (1999) Differential expression of sugarcane polyubiquitin genes and isolation of promoters from two highly-expressed members of the gene family. J Plant Physiol 155:513–519Google Scholar
  103. Wei H, Wang M-L, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251PubMedCrossRefGoogle Scholar
  104. Wu X-F, Wang C-L, Xie E-B, Gao Y, Fan Y-L, Liu P-Q, Zhao K-J (2009) Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHI1 from Brassica juncea. Planta 229:1231–1242PubMedCrossRefGoogle Scholar
  105. Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549PubMedCrossRefGoogle Scholar
  106. Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287PubMedGoogle Scholar
  107. Yang M, Bower R, Burow MD, Paterson AH, Mirkov TE (2003) A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots. Crop Sci 43:1805–1813CrossRefGoogle Scholar
  108. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596PubMedCrossRefGoogle Scholar
  109. Yin Y, Chen L, Beachy R (1997) Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J 12:1179–1188PubMedCrossRefGoogle Scholar
  110. Yu S-M, Ko S-S, Hong C-Y, Sun H-J, Hsing Y-I, Tong C-G, Ho T-HD (2007) Global functional analyses of rice promoters by genomics approaches. Plant Mol Biol 65:417–425PubMedCrossRefGoogle Scholar
  111. Zhang Z, Yao W, Dong N, Liang H, Liu H, Huang R (2007) A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot 58:2993–3003PubMedCrossRefGoogle Scholar
  112. Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium baradense and G hirsutum) after infection by Verticillium dahliae. J Plant Pathol 89:41–45Google Scholar
  113. Zubieta C, Kota P, Ferrer J-L, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14:1265–1277PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mona B. Damaj
    • 1
  • Siva P. Kumpatla
    • 2
  • Chandrakanth Emani
    • 3
  • Phillip D. Beremand
    • 4
  • Avutu S. Reddy
    • 5
  • Keerti S. Rathore
    • 3
  • Marco T. Buenrostro-Nava
    • 1
  • Ian S. Curtis
    • 1
  • Terry L. Thomas
    • 4
  • T. Erik Mirkov
    • 1
  1. 1.Department of Plant Pathology and Microbiology, Texas AgriLife ResearchTexas A&M SystemWeslacoUSA
  2. 2.Department of Trait Genetics and TechnologiesDowAgroSciences LLCIndianapolisUSA
  3. 3.Laboratory for Crop Transformation, Institute for Plant Genomics and Biotechnology, Norman E. Borlaug Center for Southern Crop ImprovementTexas A&M UniversityCollege StationUSA
  4. 4.Laboratory for Functional Genomics, Department of BiologyTexas A&M UniversityCollege StationUSA
  5. 5.Department of Molecular Biology and TraitsDowAgroSciences LLCIndianapolisUSA

Personalised recommendations