Advertisement

Planta

, Volume 231, Issue 5, pp 1211–1227 | Cite as

Identification and organization of chloroplastic and cytosolic l-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata

  • Sudipta Ray
  • Barunava Patra
  • Aparajita Das-Chatterjee
  • Arnab Ganguli
  • Arun Lahiri Majumder
Original Article

Abstract

The gene coding for rice chloroplastic l-myo-inositol-1-phosphate synthase (MIPS; EC 5.5.1.4) has been identified by matrix-assisted laser desorption time-of-flight mass spectrometry analysis of the purified and immunologically cross-reactive ~60 kDa chloroplastic protein following two-dimensional polyacrylamide gel electrophoresis, which exhibited sequence identity with the cytosolic MIPS coded by OsINO1-1 gene. A possible chloroplastic transit peptide sequence was identified upstream of the OsINO1-1 gene upon analysis of rice genome. RT-PCR and confocal microscope studies confirmed transcription, effective translation and its functioning as a chloroplast transit peptide. Bioinformatic analysis mapped the chloroplastic MIPS (OsINO1-1) gene on chromosome 3, and a second MIPS gene (OsINO1-2) on chromosome 10 which lacks conventional chloroplast transit peptide sequence as in OsINO1-1. Two new PcINO1 genes, with characteristic promoter activity and upstream cis-elements were identified and cloned, but whether these proteins can be translocated to the chloroplast or not is yet to be ascertained. Electrophoretic mobility shift assay carried out with nuclear extract of Porteresia coarctata leaves grown under both control and stressed condition shows binding of nuclear proteins with the upstream elements. Nucleotide divergence among the different Oryza and Porteresia INO1 genes were calculated and compared.

Keywords

Chloroplastic l-myo-inositol-1-phosphate synthase MALDI-TOF MS Transit peptide GFP fluorescence Genomewalking Porteresia coarctata 

Abbreviations

MIPS

l-myo-Inositol-1-phosphate synthase

MALDI-TOF MS

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

CaMV

Cauliflower mosaic virus

GFP

Green fluorescent protein

2D PAGE

Two-dimensional polyacrylamide gel electrophoresis

ORF

Open reading frame

GUS

β-Glucuronidase

Notes

Acknowledgments

The work is supported by grants to A.L.M. from the Department of Biotechnology, Government of India. S.R. and A.D.C. thank the Council of Scientific and Industrial Research, Government of India for Research Fellowships. Thanks are due to Dr Anka Hanemanne and Prof Klaus Eschrich, Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Liebigstrasse 16, Leipzig D-04103, Germany, for help in analysis of the MALDI-TOF data.

References

  1. Adhikari J, Majumder AL, Bhaduri TJ, DasGupta S, Majumder AL (1987) Chloroplast as a locale of l-myo-inositol 1-phosphate synthase. Plant Physiol 85:611–614CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Armbruster U, Hertle A, Makarenko E, Zühlke J, Pribil M, Dietzmann A, Schliebner I, Aseeva E, Fenino E, Scharfenberg M, Voigt C, Leister D (2009) Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? Mol Plant 6:1325–1335CrossRefGoogle Scholar
  4. Bachhawat N, Mande SC (2000) Complex evolution of the inositol-1-phosphate synthase gene among archaea and eubacteria. Trends Genet 16:111–113CrossRefPubMedGoogle Scholar
  5. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305CrossRefPubMedGoogle Scholar
  6. Barcisewski J, Barciszewska M, Suter B, Kubli E (1985) Plant tRNA suppressors: in vivo readthrough properties and nucleotide sequence of yellow lupin seeds tRNATyr. Plant Sci 4:193–196CrossRefGoogle Scholar
  7. Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ (1984) UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs Tyr with suppressor activity from tobacco plants. EMBO J 3:351–356PubMedGoogle Scholar
  8. Birney E, Clamp M, Durbin R (2004) Genewise and genomewise. Genome Res 14:988–995CrossRefPubMedGoogle Scholar
  9. Bradford MM (1976) Quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  10. Brown CM, Stockwell PA, Trotman CNA, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18:6339–6345CrossRefPubMedGoogle Scholar
  11. Chatterjee A, Majee M, Ghosh S, Majumder AL (2004) sll1722, an unassigned open reading frame of Synechocystis PCC 6803, codes for l-myo-inositol-1-phosphate synthase. Planta 218:989–998CrossRefPubMedGoogle Scholar
  12. Chatterjee A, Dastidar KG, Maitra S, Majumder AL (2006) sll1981, an acetolactate synthase homologue of Synechocystis sp. PCC6803, functions as l-myo-inositol-1-phosphate synthase. Planta 224:367–379CrossRefPubMedGoogle Scholar
  13. Clauser KR, Baker PR, Burlingame AL (1999) Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71:2871–2882CrossRefPubMedGoogle Scholar
  14. Dellaporta S, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  15. Dihazi H, Kessler R, Eschrich K (2001) One-step purification of recombinant yeast 6-phosphofructo-2-kinase after the identification of contaminants by MALDI-TOF MS. Protein Exp Purif 21:201–209CrossRefGoogle Scholar
  16. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016CrossRefPubMedGoogle Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  18. GhoshDastidar K, Maitra S, Goswami L, Roy D, Das KP, Majumder AL (2006) An insight into the molecular basis of salt tolerance of l-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279–1296CrossRefGoogle Scholar
  19. Guillot-Salomon T, Farineau N, Oursel A, Tuquet C (1987) Isolation and characterization of developing chloroplasts from light grown barley leaves. Physiol Plant 69:113–122CrossRefGoogle Scholar
  20. Hait NC, Ray Chaudhuri A, Das A, Bhattacharyya S, Majumder AL (2002) Processing and activation of chloroplast l-myo-inositol 1-phosphate synthase from Oryza sativa requires signals from both light and salt. Plant Sci 162:559–568CrossRefGoogle Scholar
  21. Herr AJ, Atkins JF, Gesteland RF (2000) Coupling of open reading frames by translational bypassing. Annu Rev Biochem 69:343–372CrossRefPubMedGoogle Scholar
  22. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedGoogle Scholar
  23. Imhoff V, Bourdu R (1973) Formation, d’inositol par les chloroplasts isoles de pois. Phytochemistry 12:331–336CrossRefGoogle Scholar
  24. Jarvis P, Soll J (2001) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1541:64–79CrossRefPubMedGoogle Scholar
  25. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  26. Lackey KH, Pope PM, Johnson MD (2003) Expression of 1l-myo-inositol-1-phosphate synthase in organelles. Plantphysiology 132:2240–2247Google Scholar
  27. Laemmli VK (1970) Cleavages of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327CrossRefPubMedGoogle Scholar
  29. Loewus FA, Loewus MW (1983) Myo-inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34:132–161CrossRefGoogle Scholar
  30. Majee M, Maitra S, Ghosh Dastidar K, Pattnaik S, Chatterjee A, Hait N, Das KP, Majumder AL (2004) A novel salt-tolerant l-myo-inositol 1-phosphate synthase from Porteresia coarctata Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salt-tolerance phenotype. J Biol Chem 279(27):28539–28552CrossRefPubMedGoogle Scholar
  31. Majumder AL, Johnson MD, Henry SA (1997) 1l-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348:245–256PubMedGoogle Scholar
  32. Majumder AL, Chatterjee A, Ghosh Dastidar K, Majee M (2003) Diversification and evolution of l-myo-inositol 1-phosphate synthase. FEBS Letts 553:3–10CrossRefGoogle Scholar
  33. Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins J, Gesteland R, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60CrossRefPubMedGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  35. Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227CrossRefPubMedGoogle Scholar
  36. Nakai K, Horton P (1996) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35CrossRefGoogle Scholar
  37. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  38. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefPubMedGoogle Scholar
  39. Nishiguchi R, Takanami M, Oka A (1987) Characterization and sequence determination of the replicator region in the hairy-root-inducing plasmid pRiA4b. Mol Gen Genet 206:1–8CrossRefGoogle Scholar
  40. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744CrossRefPubMedGoogle Scholar
  41. Rathnam CKM, Edwards GE (1976) Protoplasts as a tool for isolating functional chloroplast from leaves. Plant Cell Physiol 17:177–186Google Scholar
  42. Ratnam SS, Lakshmanan J, Casanova MF, Parthasarathy RN (2009) Identification of myo-inositol-3-phosphate synthase isoforms: characterization, expression and putative role of a 16 kDa γc isoform. J Biol Chem 284:9443–9457CrossRefGoogle Scholar
  43. Ray Chaudhuri A, Majumder AL (1996) Salinity induced enhancement of l-myo-inositol 1-phosphate synthase in rice (Oryza sativa L.). Plant Cell Environ 19:1337–1342Google Scholar
  44. Ray Chaudhuri A, Hait NC, DasGupta S, Bhaduri TJ, Deb R, Majumder AL (1997) l-myo-inositol 1-phosphate synthase from plant sources: characteristics of the chloroplastic and cytosolic enzymes. Plant Physiol 115:727–736Google Scholar
  45. Ribiero S, Golding GB (1998) The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788Google Scholar
  46. Roy Choudhury S, Roy S, Saha PP, Singh SK, Sengupta DN (2008) Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein. Plant Cell Rep 27:1235–1249CrossRefGoogle Scholar
  47. Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  48. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol and Evol 4:406–425Google Scholar
  49. Sherman WR, Stewart M, Zinbo M (1969) Mass spectrometric study on the mechanism of d-glucose 6 phosphate–l-myo-inositol 1-phosphate cyclase. J Biol Chem 244:5703–5708PubMedGoogle Scholar
  50. Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663CrossRefPubMedGoogle Scholar
  51. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  52. Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231CrossRefPubMedGoogle Scholar
  53. Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119:65–72CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sudipta Ray
    • 1
    • 2
  • Barunava Patra
    • 1
    • 3
  • Aparajita Das-Chatterjee
    • 1
    • 4
  • Arnab Ganguli
    • 1
    • 5
  • Arun Lahiri Majumder
    • 1
  1. 1.Plant Molecular and Cellular GeneticsBose Institute (Centenary Campus)KolkataIndia
  2. 2.Department of Botany, Centre of Advanced StudiesUniversity of CalcuttaKolkataIndia
  3. 3.Kentucky Tobacco Research and Development CentreUniversity of KentuckyLexingtonUSA
  4. 4.Molecular and Cell Biology Department, Goldman School of Dental MedicineBoston University Medical CenterBostonUSA
  5. 5.ChembiotekKolkataIndia

Personalised recommendations