, Volume 231, Issue 4, pp 977–990 | Cite as

The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts

  • Inmaculada Farran
  • Iva McCarthy-Suárez
  • Francisco Río-Manterola
  • Cristina Mansilla
  • Juan José Lasarte
  • Ángel M. Mingo-Castel
Original Article


We previously showed that recombinant extra domain A from fibronectin (EDA) purified from Escherichia coli was able to bind to toll-like receptor 4 (TLR4) and stimulate production of proinflammatory cytokines by dendritic cells. Because EDA could be used as an adjuvant for vaccine development, we aimed to express it from the tobacco plastome, a promising strategy in molecular farming. To optimize the amount of recombinant EDA (rEDA) in tobacco leaves, different downstream sequences were evaluated as potential fusion tags. Plants generated by tobacco plastid transformation accumulated rEDA at levels up to 2% of the total cellular protein (equivalent to approximately 0.3 mg/g fresh weight) when translationally fused to the first 15 amino acids of green fluorescence protein (GFP). The recombinant adjuvant could be purified from tobacco leaves using a simple procedure, involving ammonium sulfate precipitation and anion exchange chromatography. Purified protein was able to induce production of tumour necrosis factor-α (TNF-α) either by bone marrow-derived dendritic cells or THP-1 monocytes. The rEDA produced in tobacco leaves was also able to induce upregulation of CD54 and CD86 maturation markers on dendritic cells, suggesting that the rEDA retains the proinflammatory properties of the EDA produced in E. coli and thus could be used as an adjuvant in vaccination against infectious agents and cancer. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of this protein vaccine adjuvant.


Extra domain A from fibronectin Molecular farming Plastid transformation Protein-fusion tag Vaccine adjuvant 



Bone marrow-derived dendritic cell


Dendritic cell


Downstream sequence


Extra domain A from fibronectin


Total cellular protein


Toll-like receptor


Tumour necrosis factor-α


  1. Ahlers JD, Belyakov IM, Berzofsky JA (2003) Cytokine, chemokine, and costimulatory molecule modulation to enhance efficacy of HIV vaccines. Curr Mol Med 3:285–301CrossRefPubMedGoogle Scholar
  2. Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, Vasilakos JP, Noelle RJ, Kedl RM (2004) Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199:775–784CrossRefPubMedGoogle Scholar
  3. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon-alpha2b. Plant Biotechnol J 5:511–525CrossRefPubMedGoogle Scholar
  4. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640–3650CrossRefPubMedGoogle Scholar
  5. Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270CrossRefPubMedGoogle Scholar
  6. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106CrossRefPubMedGoogle Scholar
  7. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54CrossRefPubMedGoogle Scholar
  8. Cuadros C, Lopez-Hernandez FJ, Dominguez AL, McClelland M, Lustgarten J (2004) Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infect Immun 72:2810–2816CrossRefPubMedGoogle Scholar
  9. Daniell H (1997) Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol Biol 62:463–489PubMedGoogle Scholar
  10. Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345CrossRefPubMedGoogle Scholar
  11. Farran I, Rio-Manterola F, Iniguez M, Garate S, Prieto J, Mingo-Castel AM (2008) High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol J 6:516–527CrossRefPubMedGoogle Scholar
  12. Fernandez-San Millan A, Ortigosa SM, Hervas-Stubbs S, Corral-Martinez P, Segui-Simarro JM, Gaetan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441CrossRefPubMedGoogle Scholar
  13. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155CrossRefPubMedGoogle Scholar
  14. Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054CrossRefPubMedGoogle Scholar
  15. Herz S, Fussl M, Steiger S, Koop HU (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982CrossRefPubMedGoogle Scholar
  16. Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1–13CrossRefPubMedGoogle Scholar
  17. Kim J, Mullet JE (1994) Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation. Plant Mol Biol 25:437–448CrossRefPubMedGoogle Scholar
  18. Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274CrossRefPubMedGoogle Scholar
  19. Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436CrossRefPubMedGoogle Scholar
  20. Lasarte JJ, Casares N, Gorraiz M, Hervas-Stubbs S, Arribillaga L, Mansilla C, Durantez M, Llopiz D, Sarobe P, Borras-Cuesta F, Prieto J, Leclerc C (2007) The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J Immunol 178:748–756PubMedGoogle Scholar
  21. Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58CrossRefGoogle Scholar
  22. Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102CrossRefPubMedGoogle Scholar
  23. Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599CrossRefPubMedGoogle Scholar
  24. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313CrossRefPubMedGoogle Scholar
  25. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929CrossRefPubMedGoogle Scholar
  26. Miyamoto K, Kobayashi D, Maeda R, Ito T, Komai T (2003) Inhibition of cryogelation by the novel synthetic peptide (Gly-Arg-Lys-Lys-Thr): recognition site of extra domain A containing fibronectin for heparin in cryogelation. Int J Biol Macromol 31:207–215CrossRefPubMedGoogle Scholar
  27. Molina A, Veramendi J (2009) High stability of recombinant proteins expressed in tobacco chloroplasts. Open Biotechnol J. pp 67–72Google Scholar
  28. Molina A, Veramendi J, Hervas-Stubbs S (2005) Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology 342:266–275CrossRefPubMedGoogle Scholar
  29. Morton BR (1998) Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J Mol Evol 46:449–459CrossRefPubMedGoogle Scholar
  30. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445CrossRefPubMedGoogle Scholar
  31. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233CrossRefPubMedGoogle Scholar
  32. Prieto I, Hervas-Stubbs S, Garcia-Granero M, Berasain C, Riezu-Boj JI, Lasarte JJ, Sarobe P, Prieto J, Borras-Cuesta F (1995) Simple strategy to induce antibodies of distinct specificity: application to the mapping of gp120 and inhibition of HIV-1 infectivity. Eur J Immunol 25:877–883CrossRefPubMedGoogle Scholar
  33. Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483CrossRefPubMedGoogle Scholar
  34. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts––oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510CrossRefPubMedGoogle Scholar
  35. Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122CrossRefPubMedGoogle Scholar
  36. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338CrossRefPubMedGoogle Scholar
  37. Steinman RM, Granelli-Piperno A, Pope M, Trumpfheller C, Ignatius R, Arrode G, Racz P, Tenner-Racz K (2003) The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276:1–30PubMedGoogle Scholar
  38. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15CrossRefPubMedGoogle Scholar
  39. Whitney SM, Andrews TJ (2001) The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:193–205CrossRefPubMedGoogle Scholar
  40. Wu Y, Zhao D, Song L, Xu W (2009) Heterologous expression of synthetic chicken IFN-gamma in transgenic tobacco plants. Biologia 64:1115–1122CrossRefGoogle Scholar
  41. Yan Q, Jiang Z, Yang S, Deng W, Han L (2005) A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Arch Biochem Biophys 442:72–81CrossRefPubMedGoogle Scholar
  42. Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270CrossRefPubMedGoogle Scholar
  43. Yi S, Brickenden A, Choy WY (2008) A new protocol for high-yield purification of recombinant human prothymosin alpha expressed in Escherichia coli for NMR studies. Protein Expr Purif 57:1–8CrossRefPubMedGoogle Scholar
  44. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M (1999) Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 274:7611–7614CrossRefPubMedGoogle Scholar
  45. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913CrossRefPubMedGoogle Scholar
  46. Ziegelhoffer T, Raasch JA, Austin-Phillips S (2009) Expression of Acidothermus cellulolyticus E1 endo-beta-1, 4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 7:527–536CrossRefPubMedGoogle Scholar
  47. Zoschke R, Liere K, Borner T (2007) From seedling to mature plant: arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Inmaculada Farran
    • 1
  • Iva McCarthy-Suárez
    • 1
  • Francisco Río-Manterola
    • 1
  • Cristina Mansilla
    • 2
  • Juan José Lasarte
    • 2
  • Ángel M. Mingo-Castel
  1. 1.Instituto de AgrobiotecnologíaUniversidad Pública de Navarra-CSIC-Gobierno de NavarraPamplonaSpain
  2. 2.Área de Terapia Génica y HepatologíaCIMA, Universidad de NavarraPamplonaSpain

Personalised recommendations