Advertisement

Planta

, Volume 231, Issue 3, pp 705–716 | Cite as

miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula

  • Inês TrindadeEmail author
  • Cláudio Capitão
  • Tamas Dalmay
  • Manuel Pedro Fevereiro
  • Dulce Metelo dos Santos
Original Article

Abstract

Plant microRNAs have been implicated in various abiotic stress responses. We identified several conserved microRNAs that showed differential expression in Medicago truncatula plants subjected to water deficit: miR169 is down-regulated only in the roots and miR398a/b and miR408 are strongly up-regulated in both shoots and roots. Down-regulation of miR169 in the roots did not correlate with accumulation of its target MtHAP2-1 transcripts, suggesting that its regulation may not occur at the mRNA level or may depend on other regulatory mechanisms, which do not involve this miRNA, in water-deficit conditions. The up-regulation of miR398a/b and miR408 and the clear down-regulation of their respective target genes, which encode the copper proteins COX5b (subunit 5b of mitochondrial cytochrome c oxidase) and plantacyanin, highlight the involvement of these miRNAs in response to water deprivation in M. truncatula. Also, miR398 up-regulation is inversely correlated with the down-regulation of copper superoxide dismutase, CSD1, during water deficit. The regulation of genes encoding copper proteins by miR398a/b and miR408 suggests a link between copper homeostasis and M. truncatula adaptation to progressive water deficit.

Keywords

Differential expression Medicago MicroRNA398 MicroRNA408 Water deficit 

Abbreviations

COX5b

Subunit 5b of mitochondrial cytochrome c oxidase

CSD

Copper superoxide dismutase

HDT3

Histone deacetylase

MiRNA

MicroRNA

P1B-ATPase

P1B-Adenosine triphosphatase

5′-RACE

5′-Rapid amplification of cDNA ends

UTR

Untranslated region

Notes

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (FCT) through the ERA-NET Plant Genomics initiative ERA-PG/0001/2006. Inês Trindade is recipient of a PhD fellowship from FCT (SFRH/BD/40738/2007). Dulce Santos was supported by a FCT post-doctoral fellowship (SFRH/BPD/33348/2008). We acknowledge Dr. Gyorgy Szittya and Dr. Runchun Jin (School of Biological Sciences, UEA) and Dr. Jorge Paiva and Dr. Susana Araújo (ITQB) for their technical advice.

Supplementary material

425_2009_1078_MOESM1_ESM.tif (5.3 mb)
Supplemental Fig. S1 (TIF 5.25 mb)
425_2009_1078_MOESM2_ESM.doc (40 kb)
Supplemental Table S1 (DOC 39.5 kb)
425_2009_1078_MOESM3_ESM.doc (48 kb)
Supplemental Table S2 (DOC 48 kb)

References

  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945PubMedCrossRefGoogle Scholar
  2. Andersen CL, Jensen JL, Orntoft TF (2004) Normalisation of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  3. Araújo S, Duque S, Santos D, Fevereiro MP (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss Org 8:123–131CrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  5. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:52123–52158CrossRefGoogle Scholar
  6. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887PubMedCrossRefGoogle Scholar
  7. Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816PubMedCrossRefGoogle Scholar
  8. Catsky J (1960) Determination of water deficit in discs cut out from leaf blades. Biol Plant 2:76–77CrossRefGoogle Scholar
  9. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  10. Combier JP, Frugier F, Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2–1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088PubMedCrossRefGoogle Scholar
  11. Dezulian T, Palatnik JF, Huson D, Weigel D (2005) Conservation and divergence of microRNA families in plants. Genome Biol. doi: 10.1186/gb-2005-6-11-p13
  12. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Preshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433PubMedCrossRefGoogle Scholar
  13. Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789PubMedCrossRefGoogle Scholar
  14. Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417PubMedCrossRefGoogle Scholar
  15. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774PubMedCrossRefGoogle Scholar
  16. Griffith-Jones S (2004) The microRNA registry. Nucleic Acids Res 32 (database issue):D109–D111Google Scholar
  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  18. Hawker NP, Bowman JL (2004) Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270PubMedCrossRefGoogle Scholar
  19. Jagadeeswaran G, Saini A, Sunkar R (2009a) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014PubMedCrossRefGoogle Scholar
  20. Jagadeeswaran G, Zheng Y, Li Y-F, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009b) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184:85–98PubMedCrossRefGoogle Scholar
  21. Jones-Rhoades MJ, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  22. Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811PubMedCrossRefGoogle Scholar
  23. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217PubMedCrossRefGoogle Scholar
  24. Khan HR, Link W, Hocking TJ, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217CrossRefGoogle Scholar
  25. Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. doi: 10.1105/tpc.109.068130
  26. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146PubMedCrossRefGoogle Scholar
  27. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843PubMedCrossRefGoogle Scholar
  28. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedCrossRefGoogle Scholar
  29. Lu C, Fedoroff NV (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366PubMedCrossRefGoogle Scholar
  30. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedCrossRefGoogle Scholar
  31. Moxon S, Schwach F, Maclean D, Dalmay T, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253PubMedCrossRefGoogle Scholar
  32. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  33. Neves LO, Duque SRL, Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405CrossRefGoogle Scholar
  34. Nunes C, Araújo S, Silva J, Fevereiro P, Silva A (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296CrossRefGoogle Scholar
  35. Nunes C, Araújo S, Silva J, Fevereiro P, Silva A (2009) Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Ann Appl Biol. doi: 10.1111/j.1744-7348.2009.00341.x
  36. Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by Northern blot. Nucleic Acids Res 35(8):e60PubMedCrossRefGoogle Scholar
  37. Phillips J, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597PubMedCrossRefGoogle Scholar
  38. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2006) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:1360–1385Google Scholar
  39. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedCrossRefGoogle Scholar
  40. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606PubMedCrossRefGoogle Scholar
  41. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  42. Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Org 70:155–161CrossRefGoogle Scholar
  43. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330PubMedCrossRefGoogle Scholar
  44. Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195PubMedCrossRefGoogle Scholar
  45. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396PubMedCrossRefGoogle Scholar
  46. Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133PubMedCrossRefGoogle Scholar
  47. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedCrossRefGoogle Scholar
  48. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedCrossRefGoogle Scholar
  49. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593PubMedCrossRefGoogle Scholar
  50. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11Google Scholar
  51. Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438PubMedCrossRefGoogle Scholar
  52. Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289PubMedCrossRefGoogle Scholar
  53. Wen J, Frickey T, Weiller GF (2008) Computational prediction of candidate miRNAs and their targets from Medicago truncatula non-protein-coding transcripts. In Silico Biol 8:291–306PubMedGoogle Scholar
  54. Williams LE, Mills RF (2005) P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502PubMedCrossRefGoogle Scholar
  55. Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378PubMedCrossRefGoogle Scholar
  56. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanaic T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361PubMedCrossRefGoogle Scholar
  57. Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33 (web server issue):W701–W704Google Scholar
  58. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1045–1062Google Scholar
  59. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Comm 354:585–590PubMedCrossRefGoogle Scholar
  60. Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Comm 374:538–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Inês Trindade
    • 1
    Email author
  • Cláudio Capitão
    • 1
  • Tamas Dalmay
    • 2
  • Manuel Pedro Fevereiro
    • 1
    • 3
  • Dulce Metelo dos Santos
    • 1
    • 4
  1. 1.Laboratório de Biotecnologia de Células Vegetais, Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.School of Biological SciencesUniversity of East AngliaNorwichUK
  3. 3.Departamento de Biologia Vegetal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Centro de Veterinária e Zootecnia, Instituto de Investigação Científica e TropicalUniversidade Técnica de LisboaLisbonPortugal

Personalised recommendations