, Volume 231, Issue 3, pp 499–506 | Cite as

Belowground volatiles facilitate interactions between plant roots and soil organisms

  • Katrin Wenke
  • Marco Kai
  • Birgit PiechullaEmail author


Many interactions between organisms are based on the emission and perception of volatiles. The principle of using volatile metabolites as communication signals for chemo-attractant or repellent for species-specific interactions or mediators for cell-to-cell recognition does not stop at an apparently unsuitable or inappropriate environment. These infochemicals do not only diffuse through the atmosphere to process their actions aboveground, but belowground volatile interactions are similarly complex. This review summarizes various eucaryotes (e.g., plant (roots), invertebrates, fungi) and procaryotes (e.g., rhizobacteria) which are involved in these volatile-mediated interactions. The soil volatiles cannot be neglected anymore, but have to be considered in the future as valuable infochemicals to understand the entire integrity of the ecosystems.


Volatiles VOCs Belowground Soil Rhizosphere Rhizobacteria Plant roots Soil fungi 



Volatile organic compound



The authors thank the DFG for financial support to BP (Pi 153/26-1). We apologize that not all papers presenting additional information to this topic were cited due to space limitations.

Supplementary material

425_2009_1076_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 63.5 kb)


  1. Almenar E, Auras R, Wharton P, Rubino M, Harte B (2007) Release of acetaldehyde from β-cyclodextrins inhibits postharvest decay fungi in vitro. J Agric Food Chem 55:7205–7212PubMedCrossRefGoogle Scholar
  2. Aochi YO, Farmer WJ (2005) Impact of soil microstructure on the molecular transport dynamics of 1, 2-dichlorethane. Geoderma 127:137–153CrossRefGoogle Scholar
  3. Aratchige NS, Lesna I, Sabelis MW (2004) Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulb infested by rust mites. Exp Appl Acarol 33:21–30PubMedCrossRefGoogle Scholar
  4. Asensio D, Penuelas J, Filella I, Llusia J (2007) On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261CrossRefGoogle Scholar
  5. Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657PubMedCrossRefGoogle Scholar
  6. Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80CrossRefGoogle Scholar
  7. Bauske EM, Rodríguez-Kábana R, Estaun V, Kloepper JW, Robertson DG, Weaver CF, King PS (1994) Management of Meloidogyne incognita on cotton by use of botanical aromatic compounds. Nematropica 24:143–150Google Scholar
  8. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedGoogle Scholar
  9. Bertin C, Ynag X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  10. Bertoli A, Pistelli L, Morelli I, Fraternale D, Giamperi L, Ricci D (2004) Volatile constituents of different parts (roots, stems and leaves) of Smyrnium olusatrum L. Flavour Fragr J 19:522–525CrossRefGoogle Scholar
  11. Boff MIC, Zoon FC, Smits PH (2001) Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomologia Experimentalis et Applicata 98:329–337CrossRefGoogle Scholar
  12. Borg–Karlson AK, Englund FO, Unelius CR (1994) Dimethyloligosulphide, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochem 35:321–323CrossRefGoogle Scholar
  13. Branson TF (1982) Olfactory response of larvae of Diabrotica virgifera virgifera to plant roots. Entomol Appl 31:303–307CrossRefGoogle Scholar
  14. Breheret S, Talou T, Rapior S, Bessiere JM (1999) Geosmin, a sesquiterpenoid compound responsible for the musty-earthy odor of Cortinarius herculeus, Cystoderma amianthinum, and Cy. carcharias. Mycologia 91:117–120CrossRefGoogle Scholar
  15. Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193PubMedCrossRefGoogle Scholar
  16. Carson JF, Wong FF (1961) The volatile flavour components of onions. J Agric Food Chem 9:140–143CrossRefGoogle Scholar
  17. Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81PubMedCrossRefGoogle Scholar
  18. Cheng SS, Liu JY, Chang EH, Chang ST (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour Technol 99:5145–5149PubMedCrossRefGoogle Scholar
  19. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829PubMedCrossRefGoogle Scholar
  20. Chuankun X, Minghe M, Leming Z, Keqin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochemi 36:1997–2004CrossRefGoogle Scholar
  21. Cobb FW Jr, Krstic M, Zavarin E, Barber HW Jr (1968) Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathol 58:1327–1335Google Scholar
  22. Darriet P, Pons M, Lamy S, Dubourdieu D (2000) Identification and quantification of geosmin, a powerful earthy odorant contaminating wines. J Agric Food Chem 48:4835–4838PubMedCrossRefGoogle Scholar
  23. Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2004) Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chem Bio Chem 5:778–787PubMedGoogle Scholar
  24. Dickschat JS, Bode HB, Mahmud T, Müller R, Schulz S (2005a) A novel type of geosmin biosynthesis in myxobacteria. J Org Chem 70:5174–5182PubMedCrossRefGoogle Scholar
  25. Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005b) Volatiles Released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865PubMedCrossRefGoogle Scholar
  26. Doane JF, Lee YW, Klinger J, Westcott ND (1975) The orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. Can Entomol 107:1233–1252CrossRefGoogle Scholar
  27. Duponnois R, Kisa M (2006) The possible role of trehalose in the mycorrhiza helper bacterium effect. Can J Bot 84:1005–1008CrossRefGoogle Scholar
  28. Dusenbery DB (1987) Theoretical range over which bacteria and nematodes could use carbon dioxide to locate plant roots. J Chem Ecol 13:1617–1624CrossRefGoogle Scholar
  29. Effmert U, Buss D, Rohrbeck D, Piechulla B (2006) Localization of the synthesis and emission of scent compounds within the flower. In: Dudareva N, Pichersky E (eds) Floral scents. CRC Press Taylor and Francis Group, London, pp 105–124Google Scholar
  30. Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induces systemic resistance in plants. Phytochem 67:2262–2268CrossRefGoogle Scholar
  31. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Syvchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964CrossRefGoogle Scholar
  32. Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Microbiol 74:119–126CrossRefGoogle Scholar
  33. Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Microbiol 76:395–405CrossRefGoogle Scholar
  34. Gerber NN (1968) Geosmin, from microorganisms, is trans-1, 10-dimethyltrans-9-decalol. Tetrahedr Lett 25:2971–2974CrossRefGoogle Scholar
  35. Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from Actinomycetes. Appl Microbiol 13:935–938PubMedGoogle Scholar
  36. Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, Barbieri e, Giomaro G, Stocchi V (2008) Geographical traceability of Italien white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun Mass Spectrom 22:3147–3153PubMedCrossRefGoogle Scholar
  37. Gu Y, Mo M, Zhou J, Zou C, Zhang K (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575CrossRefGoogle Scholar
  38. Guerin PM, Ryan MF (1980) Insecticidal effect of trans-2-nonenal, a constituent of carrot root. Experientia 36:1387–1388CrossRefGoogle Scholar
  39. Guerin PM, Ryan MF (1984) Relationship between root volatiles of some carrot cultivars and their resistance to the carrot fly, Psila rosae. Entomol Exp Appl 36:217–224CrossRefGoogle Scholar
  40. Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 95:853–860PubMedCrossRefGoogle Scholar
  41. Hayes TS, Randle PE, Last FT (1969) The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Ann Appl Biol 64:177–187CrossRefGoogle Scholar
  42. Hayward S, Muncey AE, James AE, Halsall CJ, Hewitt CN (2001) Monoterpene emissions from soil in a sitka spruce forest. Atmos Environ 35:4081–4087CrossRefGoogle Scholar
  43. Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083PubMedGoogle Scholar
  44. Humphris SN, Bruce A, Buultjens E, Wheatley RE (2002) The effects of volatile microbial secondary metabolites on the protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219PubMedCrossRefGoogle Scholar
  45. Hynes J, Muller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57PubMedCrossRefGoogle Scholar
  46. Izaguirre G, Hwang CJ, Krasner SW, McGuire MJ (1982) Geosmin and 2-methylisoborneol from Cyanobacteria in three water supply systems. Appl Environ Microbiol 43:708–714PubMedGoogle Scholar
  47. Johnson SN, Gregory PJ (2006) Chemically mediated host-plant location and selection by root-feeding insects. Physiol Entomol 31:1–13CrossRefGoogle Scholar
  48. Johnson SN, Zhang XX, Crawford JW, Gregory PJ, Hix NJ, Jarvis SC, Murray PJ, Young IM (2006) Effects of carbon dioxide on the searching behavior of the root-feeding clover weevil Sitona Lepidus (Coleoptera: Curculionidae). Bulletin Entomol Res 96:361–366Google Scholar
  49. Jones OT, Coaker TH (1977) Oriented responses of carrot fly larvae Psila rosae, to plant odours, carbon dioxide and carrot root volatiles. Physiol Entomol 2:189–197CrossRefGoogle Scholar
  50. Kai M, Piechulla B (2009) Plant growth promotions due to rhizobacterial volatiles—an effect of CO2? FEBS Lett 583:3473–3477PubMedCrossRefGoogle Scholar
  51. Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360PubMedCrossRefGoogle Scholar
  52. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012PubMedCrossRefGoogle Scholar
  53. Kalemba D, Kusewicz D, Swider K (2002) Antimicrobial properties of the essential oil of Artimisia asiatica Nakai. Phytotherapy Res 16:288–291CrossRefGoogle Scholar
  54. Kleinheinz GT, Bagley ST, St. John WP, Rughani JR, McGinnis GD (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37:151–157PubMedCrossRefGoogle Scholar
  55. Klinger J (1959) Die Bedeutung der Kohlendioxyd-Ausscheidung der Wurzeln für die Orientierung der Larven von Otiorrhynchus sulcatus F. und anderer bodenbewohnender phytophager Insektenarten. doi: 10.3929/ethz-a-000139365
  56. Klinger J (1963) Die Orientierung von Ditylenchus dipsaci in gemessenen künstlichen und biologischen CO2-Gradienten. Nematologica 9:185–199CrossRefGoogle Scholar
  57. Kokalis-Burelle N, Martinez-Ochoa N, Rodríguez-Kabana R, Kloepper JW (2002) Development of multicomponent transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicum esculentum). J Nematol 34:362–369PubMedGoogle Scholar
  58. Krupa S, Fries N (1971) Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Can J Bot 49:1425–1431CrossRefGoogle Scholar
  59. Laothawornkitkul J, Taylor JE, Pail ND, Hewitt CN (2009) Biogenic volatile organic compounds in the earth system. New Phytol 183:27–51PubMedCrossRefGoogle Scholar
  60. Lin C, Owen S, Pefiuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960CrossRefGoogle Scholar
  61. Mackie A, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385CrossRefGoogle Scholar
  62. Matsumoto Y (1970) Volatile organic sulfur compounds as insect attractants with special reference to host selection. In: Wood DL, Silverstein RM, Nakajima M (eds) Control of insect behavior by natural products. Academic Press, New York, pp 133–160Google Scholar
  63. Mattheis JP, Roberts RG (1992) Identification of geosmin as a volatile metabolite of Penicillium expansum. Appl Environ Microbiol 58:3170–3172PubMedGoogle Scholar
  64. McLoughlin E, Rhodes AH, Owen SM, Semple KT (2009) Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil organisms. Environ Pollut 157:86–94PubMedCrossRefGoogle Scholar
  65. Medsker LL, Jenkins D, Thomas JF (1968) Odorous compounds in natural waters. An earthy-smelling compound associated with blue-green algae and actinomycetes. Environ Sci Technol 2:461–464CrossRefGoogle Scholar
  66. Melin E, Krupa S (1971) Studies on ectomycorrhizae of pine II. Growth inhibition of mycorrhizal fungi by volatile organic constituents of Pinus silvestris (Scots Pine) roots. Physiol Plantarum 25(3):337–340CrossRefGoogle Scholar
  67. Menotta M, Gioacchini AM, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004) Headspacce solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhizae synthesis system. Rapid Commun Mass Spectrom 18:206–210PubMedCrossRefGoogle Scholar
  68. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854PubMedCrossRefGoogle Scholar
  69. Muller WH, Muller CH (1964) Volatile growth inhibitors produced by Salvia species. Bull Torrey Bot Club 91:327–330CrossRefGoogle Scholar
  70. Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–478PubMedCrossRefGoogle Scholar
  71. Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658PubMedCrossRefGoogle Scholar
  72. Neveu N, Grandgirard J, Nenon JP, Cortesero AM (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J Chem Ecol 28:1717–1732PubMedCrossRefGoogle Scholar
  73. Nordlander G, Eidmann HH, Jacobsson U, Nordenhem H, Sjödin K (1986) Orientation of the pine weevil Hylobius abietis to underground sources of host volatiles. Entomol Exp Appl 41:91–100CrossRefGoogle Scholar
  74. Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90:710–715PubMedCrossRefGoogle Scholar
  75. Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39PubMedCrossRefGoogle Scholar
  76. Oyedemi SO, Okoh AI, Mabinya LV, Pirochenva G, Afolayan AJ (2009) The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African J Biotechnol 8:1280–1286Google Scholar
  77. Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154CrossRefGoogle Scholar
  78. Paim U, Beckel WE (1963) The carbon dioxide related behaviour of the adults of Orthosoma brunneum. Can J Zool 42:295–304CrossRefGoogle Scholar
  79. Park MJ, Gwak KS, Yang I, Kim KW, Jeung EB, Chang JW, Choi IG (2009) Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 80(5):290–296PubMedCrossRefGoogle Scholar
  80. Pline M, Dusenbery DB (1987) Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera–computer tracking. J Chem Ecol 13:873–888CrossRefGoogle Scholar
  81. Rasman S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369CrossRefGoogle Scholar
  82. Rasman S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737CrossRefGoogle Scholar
  83. Reinecke A, Müller F, Hilker M (2008) Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic Appl Ecol 9:568–576CrossRefGoogle Scholar
  84. Rhodes AH, Owen SM, Semple KT (2007) Biodegradation of 2, 4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types. FEMS Microbiol Lett 269:323–330PubMedCrossRefGoogle Scholar
  85. Rohloff J (2002) Volatiles from rhizomes of Rhodiola rosea L. Phytochem 59:655–661CrossRefGoogle Scholar
  86. Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer, BerlinGoogle Scholar
  87. Ryan MF, Guerin PM (1982) Behavioural responses of the carrot fly larvae, Psila rosae, to carrot root volatiles. Physiol Ent 7:315–324CrossRefGoogle Scholar
  88. Ryu CM, Farag AF, Hu C, Reddy MS, Wei H, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proceed Natl Acad Sci USA 100:4927–4932CrossRefGoogle Scholar
  89. Ryu CM, Farag AF, Hu C, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedCrossRefGoogle Scholar
  90. Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can J Microbiol 31:570–574CrossRefGoogle Scholar
  91. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842PubMedCrossRefGoogle Scholar
  92. Selander J, Havukkala I, Kalo P (1976) Olfactory behaviour of Hylobius abietis L. (Col., Curculionidae). II. Response to 3-carene and α-terpineol during three stages of its life cycle. Ann Ent Fenn 42:63–66Google Scholar
  93. Smith RH (1965) Effect of monoterpene vapors on the western pine beetle. J Econ Entomol 58:509–510Google Scholar
  94. Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424PubMedCrossRefGoogle Scholar
  95. Splivallo R, Bossi S, Maffei M, Bonfante P (2009a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68(20):2584–2598CrossRefGoogle Scholar
  96. Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009b) Truffles regulate root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029PubMedCrossRefGoogle Scholar
  97. Spörle J, Becker H, Allen NS, Gupta MP (1991) Occurrence of (-) geosmin and other terpenoids in an axenic culture of the liverwort Symphyogyna brongniartii. Z Naturforsch 46C:183–188Google Scholar
  98. Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58PubMedCrossRefGoogle Scholar
  99. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. Critical Rev Microbiol 4:333–382CrossRefGoogle Scholar
  100. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiol 147:2943–2950Google Scholar
  101. Sutherland ORW (1972) Olfactory responses of Costelytra zealandica (Coleoptera: Melolonthinae) larvae to grass root odours. New Zealand J Sci 15:165–172Google Scholar
  102. Tapia T, Perich F, Pardo F, Palma G, Quiroz A (2007) Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem Systemat Ecol 35:61–67CrossRefGoogle Scholar
  103. van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  104. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641PubMedCrossRefGoogle Scholar
  105. Vilela GR, de Almeida GS, D’Arce MABR, Moraes MHD, Brito JO, da Silva MFGF, Silva SC, de Stefano Piedade SM, Calori-Domingues MA, da Gloria EM (2009) Activity of essential oil and its major compound 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Products Res 45:108–111CrossRefGoogle Scholar
  106. Viles AL, Reese RN (1996) Allelopathic potential of Echinacea angustifolia DC. Environ Exp Bot 36:39–43CrossRefGoogle Scholar
  107. Weissteiner S, Schütz S (2006) Are different volatile pattern influencing host plant choice of belowground living insects. Mitt Dtsch Ges Allg Angew Ent 15:51–55Google Scholar
  108. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81:357–364PubMedCrossRefGoogle Scholar
  109. Witcosky JJ, Schowalter TD, Hansen EM (1987) Host-derived attractants for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and Steremnius carinatus (Coleoptera: Curculionidae). Environ Entomol 16:1310–1313Google Scholar
  110. Wolfson JL (1987) Impact of Rhizobium nodules on Sitona hispidulus, the clover root curculio. Entomol Exp Appl 43:237–243CrossRefGoogle Scholar
  111. Yamamoto Y, Tanaka K, Komori N (1994) Volatile compounds excreted by myxobacteria isolated from lake water and sediments. Jpn J Limnol 55:241–245CrossRefGoogle Scholar
  112. Zak JC, Willig MR, Moorhead DL, Wildmann HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar
  113. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851PubMedCrossRefGoogle Scholar
  114. Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday s, Pare PW (2008) Soil bacteria augments photosynthetic capacity by increasing photosynthetic efficiency and chlorophyll content in Arabidopsis. Plant J 56:264–273PubMedCrossRefGoogle Scholar
  115. Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Biological Sciences, Institut für BiowissenschaftenUniversity of RostockRostockGermany

Personalised recommendations