Skip to main content
Log in

Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The present work reports changes in bioenergetic parameters and mitochondrial activities during the manifestation of two events of programmed cell death (PCD), linked to Abies alba somatic embryogenesis. PCD, evidenced by in situ nuclear DNA fragmentation (TUNEL assay), DNA laddering and cytochrome c release, was decreased in maturing embryogenic tissue with respect to the proliferation stage. In addition, the major cellular energetic metabolites (ATP, NAD(P)H and glucose-6-phosphate) were highered during maturation. The main mitochondrial activities changed during two developmental stages. Mitochondria, isolated from maturing, with respect to proliferating cell masses, showed an increased activity of the alternative oxidase, external NADH dehydrogenase and fatty-acid mediated uncoupling. Conversely, a significant decrease of the mitochondrial K +ATP channel activity was observed. These results suggest a correlation between mitochondrial activities and the manifestation of PCD during the development of somatic embryos. In particular, it is suggested that the K +ATP channel activity could induce an entry of K+ into the matrix, followed by swelling and a release of cytochrome c during proliferation, whereas the alternative pathways, acting as anti-apoptotic factors, may partially counteract PCD events occurring during maturation of somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocase

AOX:

Cyanide-resistant alternative oxidase

DAPI:

4′,6-Diamidino-2-phenylindole

∆F:

Variations of fluorescence

DTE:

Dithioerythritol

ΔΨ:

Transmembrane electrical potential

ETC:

Electron transport chain

FFA:

Free fatty acids

Glu-6-P:

Glucose-6-phosphate

IgG:

Immunoglobulins

PCD:

Programmed cell death

PEG:

Polyethylene glycol

PEMs:

Pro-embryogenic cell masses

PMSF:

Phenylmethanesulphonyl fluoride

PTP:

Permeability transition pore

PUMP:

Plant uncoupling mitochondrial protein

PVPP:

Polyvinylpolypyrrolidone

ROS:

Reactive oxygen species

SE:

Somatic embryogenesis

TMR:

Tetramethyl-rhodamine

TUNEL:

Terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end labelling

References

  • Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:573–583

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M, Forte M (1974a) Glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, London, pp 458–459

    Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974b) Fumarase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, London, pp 452–453

    Google Scholar 

  • Bernardi P, Petronilli V, Di Lisa F et al (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:111–112

    Article  Google Scholar 

  • Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667

    Article  CAS  PubMed  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182

    Article  CAS  PubMed  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF (2005a) Programmed cell death in plant embryogenesis. Curr Top Dev Biol 67:135–179

    Article  CAS  PubMed  Google Scholar 

  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005b) Cysteine protease mcll-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Casolo V, Braidot E, Chiandussi E, Macri F, Vianello A (2000) The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria. FEBS Lett 474:53–57

    Article  CAS  PubMed  Google Scholar 

  • Casolo V, Braidot E, Chiandussi E, Vianello A, Macrì F (2002) K +ATP channel opening prevents succinate-dependent H2O2 generation by plant mitochondria. Physiol Plant 118:313–318

    Article  Google Scholar 

  • Casolo V, Petrussa E, Krajňáková J, Macri F, Vianello A (2005) Involvement of the mitochondrial K +ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. J Exp Bot 56:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Chiandussi E, Petrussa E, Macrì F, Vianello A (2002) Modulation of a plant mitochondrial K +ATP channel and its involvement in cytochrome c release. J Bioenerg Biomembr 34:177–184

    Article  CAS  PubMed  Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta 1757:730–741

    Article  CAS  PubMed  Google Scholar 

  • Elthon TE, Nickels RL, McIntosh L (1989) Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol 89:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Filonova LH, Bozhkov PV, von Arnold S (2000a) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264

    Article  CAS  PubMed  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000b) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Klingenberg M (1974) Nicotinamide-adenine dinucleotides (NAD, NADP, NADH, NADPH). Spectrophotometric and fluorimetric methods. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol IV. Academic Press, New York, pp 2054–2059

    Google Scholar 

  • Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in greek fir. Can J For Res Rev Can Rec For 38:760–769

    Article  Google Scholar 

  • Kumar R, Lelu M-A, Small I (1995) Purification of mitochondria and mitochondrial nucleic acids from embryogenic suspension cultures of a gymnosperm, Larix x leptoeuropaea. Plant Cell Rep 14:534–538

    CAS  Google Scholar 

  • Laus MN, Soccio M, Trono D, Cattivelli L, Pastore D (2008) Plant inner membrane anion channel (PIMAC) function in plant mitochondria. Plant Cell Physiol 49:1039–1055

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ (1999) Mechanisms of hepatic toxicity—V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol Gastrointest Liver Physiol 276:G1–G6

    CAS  Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Lorenzi R (2007) Caspase-like proteases involvement in programmed cell death of Phaseolus coccineus suspensor. Plant Sci 172:573–578

    Article  CAS  Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  CAS  PubMed  Google Scholar 

  • Macisaac EA, Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 187–197

    Google Scholar 

  • McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15

    Article  CAS  Google Scholar 

  • Møller IM (2002) A new dawn for plant mitochondrial NAD(P)H dehydrogenases. Trends Plant Sci 7:235–237

    Article  PubMed  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants gymnosperms, vol 3. Kluwer, Dordrecht, pp 341–355

    Google Scholar 

  • Parent C, Capelli N, Dat J (2008) Reactive oxygen species, stress and cell death in plants. Comp Rend Biol 331:255–261

    Article  CAS  Google Scholar 

  • Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999) The existence of the K+ channel in plant mitochondria. J Biol Chem 274:26683–26690

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress—a case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Casolo V, Braidot E, Chiandussi E, Macrí F, Vianello A (2001) Cyclosporin A induces the opening of a potassium-selective channel in higher plant mitochondria. J Bioenerg Biomembr 33:107–117

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Casolo V, Peresson C, Braidot E, Vianello A, Macri F (2004) The K +ATP channel is involved in a low-amplitude permeability transition in plant mitochondria. Mitochondrion 3:297–307

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Bertolini A, Krajňáková J, Casolo V, Macrí F, Vianello A (2008a) Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonica Loud.: characterization of a K +ATP channel. Plant Cell Rep 27:137–146

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Casolo V, Peresson C, Krajňáková J, Macrí F, Vianello A (2008b) Activity of a K +ATP channel in Arum spadix mitochondria during thermogenesis. J Plant Physiol 165:1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC, Podestà FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing different models. J Exp Bot 59:435–444

    Article  CAS  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Sieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EWY, Abdel-Mesih A, Møller IM, Vanlerberghe GC (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56:1499–1515

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:71–79

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many way to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497

    Article  PubMed  Google Scholar 

  • van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Express Patt 3:83–91

    Article  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  CAS  PubMed  Google Scholar 

  • Vercesi AE, Borecký J, de Godoy Maia I, Arruda P, Cuccovia IM, Chaimovich H (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404

    Article  CAS  PubMed  Google Scholar 

  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajňáková J, Patui S, Braidot E, Macrì F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252

    Article  CAS  Google Scholar 

  • von Arnold S (2008) Somatic embryogenesis. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn, vol 1. The background. Springer, Dordrecht, pp 335–354

    Google Scholar 

  • von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suarez MF, Bozhkov PV (eds) Methods in molecular biology. Plant embryogenesis, vol 427. Humana, Totowa, pp 31–47

    Chapter  Google Scholar 

  • Vooková B, Kormut’ák A (2007) Abies biotechnology—research and development of tissue culture techniques for vegetative propagation. Tree For Sci Biotechnol 1:39–46

    Google Scholar 

  • Vuosku J, Sarjala T, Jokela A, Sutela S, Sääskilahti M, Suorsa M, Läärä E, Häggman H (2009) One tissue, two fates: different roles of megagametophyte cells during scots pine embryogenesis. J Exp Bot 60:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Thomas Elthon (University of Nebraska, USA) is greatly acknowledged for providing the monoclonal anti-AOX antibody. Ms. Carla Calligaro (Animal Science Dept. of University of Udine, Italy) is greatly acknowledged for technical support provided during TUNEL and histological assays. This research was supported by the University of Udine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Vianello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrussa, E., Bertolini, A., Casolo, V. et al. Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba . Planta 231, 93–107 (2009). https://doi.org/10.1007/s00425-009-1028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1028-x

Keywords

Navigation