, Volume 230, Issue 5, pp 947–957 | Cite as

Structural characterisation of the pectic polysaccharide rhamnogalacturonan II using an acidic fingerprinting methodology

  • Martial Séveno
  • Aline Voxeur
  • Christophe Rihouey
  • Ai-Min Wu
  • Tadashi Ishii
  • Christian Chevalier
  • Marie Christine Ralet
  • Azeddine Driouich
  • Alan Marchant
  • Patrice LerougeEmail author
Original Article


Rhamnogalacturonan II (RG-II) is a structurally complex cell wall pectic polysaccharide. Despite its complexity, both the structure of RG-II and its ability to dimerise via a borate diester are conserved in vascular plants suggesting that RG-II has a fundamental role in primary cell wall organisation and function. The selection and analysis of new mutants affected in RG-II formation represents a promising strategy to unravel these functions and to identify genes encoding enzymes involved in RG-II biosynthesis. In this paper, a novel fingerprinting strategy is described for the screening of RG-II mutants based on the mild acid hydrolysis of RG-II coupled to the analysis of the resulting fragments by mass spectrometry. This methodology was developed using RG-II fractions isolated from citrus pectins and then validated for RG-II isolated from the Arabidopsis mur1 mutant and irx10 irx10-like double mutant.


Cell wall mutants Fingerprinting Mass spectrometry Rhamnogalacturonan II 





l-Aceric acid


2-Keto-3-deoxy-d-lyxo-heptulosaric acid


1,2 Diamino-4,5-methylene dioxybenzene


2-Keto-3-deoxy-d-manno-octulosonic acid


Electrospray ionisation mass spectrometry




Matrix-assisted laser desorption ionisation-time of flight


Oligosaccharide mass profiling method


2-O-Methyl l-fucose


2-O-Methyl d-xylose


Rhamnogalacturonan II


Trifluoroacetic acid



The Nottingham Arabidopsis Stock Center and Gregory Mouille, INRA Versailles, France are acknowledged for providing seeds for the Arabidopsis insertion lines and mutants. The authors thank Muriel Bardor, EA4358 University of Rouen, France for MALDI TOF analyses. This research was supported in France by the CNRS, the Région Haute-Normandie and the University of Rouen. Research at UPSC Sweden (A.M., A.-M.W.) was supported by the Swedish Foundation for Scientific Research (SSF) and Formas.


  1. Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720PubMedCrossRefGoogle Scholar
  2. Baskin TI, Betzner AS, Hoggart R, Cork A, Williamson RE (1992) Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol 19:427–437CrossRefGoogle Scholar
  3. Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746PubMedCrossRefGoogle Scholar
  4. Delmas F, Petit J, Joubès J, Seveno M, Paccalet T, Hernould M, Lerouge P, Mouras M, Chevalier C (2003) The gene expression and enzyme activity of plant 3-deoxy-D-manno-2-octulosonic acid-8-phosphate synthase are preferentially associated with cell division in a cell cycle-dependent manner. Plant Physiol 133:348–360PubMedCrossRefGoogle Scholar
  5. Delmas F, Séveno M, Northey JGB, Hernould M, Lerouge P, Mc Court P, Chevalier C (2008) The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation. J Exp Bot 59:2639–2647PubMedCrossRefGoogle Scholar
  6. Egelund EJ, Petersen BL, Motawia MS, Damager I, Faik A, Olsen CE, Ishii T, Clausen H, Ulvskov P, Geshi N (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1, 3)-α-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593–2607PubMedCrossRefGoogle Scholar
  7. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423PubMedCrossRefGoogle Scholar
  8. Fleischer A, Titel C, Ehwald R (1998) The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol 117:1401–1410PubMedCrossRefGoogle Scholar
  9. Glushka JN, Terrell M, York WS, O’Neill MA, Gucwa A, Darvill AG, Albersheim P, Prestegard JH (2003) Primary structure of the 2-O-methyl-α-L-fucose containing sidechain of the pectic polysaccharide, rhamnogalacturonan II. Carbohydr Res 338:341–352PubMedCrossRefGoogle Scholar
  10. Ishii T, Kaneko S (1998) Oligosaccharides generated by partial hydrolysis of the borate-rhamnogalacturonan II complex from sugar beet. Phytochemistry 49:1195–1202PubMedCrossRefGoogle Scholar
  11. Ishii T, Matsunaga T (1996) Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284:1–9CrossRefGoogle Scholar
  12. Ishii T, Matsunaga T, Hayashi N (2001) Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol 126:1698–1705PubMedCrossRefGoogle Scholar
  13. Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319–16324PubMedCrossRefGoogle Scholar
  14. Kobayashi M, Matoh H, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020PubMedGoogle Scholar
  15. Lerouxel O, Choo TS, Séveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763PubMedCrossRefGoogle Scholar
  16. Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, O’Neill M (2004) Occurence of the primary cell wall polysaccharide rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the evolution of vascular plants. Plant Physiol 134:339–351PubMedCrossRefGoogle Scholar
  17. Mouille G, Robin S, Lecomte M, Pagant S, Höfte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier transform infrared (FT-IR) microspectroscopy. Plant J 35:393–404PubMedCrossRefGoogle Scholar
  18. O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem 271:22923–22930PubMedCrossRefGoogle Scholar
  19. O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement borate cross-linking of the cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849PubMedCrossRefGoogle Scholar
  20. Pérez S, Rodriguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85:109–121PubMedCrossRefGoogle Scholar
  21. Potikha T, Delmer DP (1995) A mutant Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J 7:453–460CrossRefGoogle Scholar
  22. Reiter WD, Chapple CCS, Somerville CR (1997) Mutant of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345PubMedCrossRefGoogle Scholar
  23. Reuhs BL, Glenn J, Stephens SB, Kim JS, Christie DB, Glushka JG, Zablackis E, Albersheim P, Darvill A, O’Neill MA (2004) L-galactose replaces L-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the L-fucose-deficient mur1 Arabidopsis mutant. Planta 219:147–157PubMedCrossRefGoogle Scholar
  24. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  25. Rodríguez-Carvajal MA, Hervé du Penhoat C, Mazeau K, Doco T, Pérez S (2003) The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modelling and NMR investigation. Carbohydr Res 338:651–671PubMedCrossRefGoogle Scholar
  26. Shin K-S, Kiyohara H, Matsumoto T, Yamada H (1998) Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydr Res 307:97–106CrossRefGoogle Scholar
  27. Spellman MW, Mc Neil M, Darvill AG, Albersheim P (1983) Characterization of a structurally complex heptasaccharide isolated from the pectic polysaccharide rhamnogalacturonan II. Carbohydr Res 122:131–153CrossRefGoogle Scholar
  28. Stevenson TT, Darvill AG, Albersheim P (1988) Structural features of the plant cell-wall polysaccharide rhamnogalacturonan-II. Carbohydr Res 182:207–226CrossRefGoogle Scholar
  29. Thomas JR, Darvill AG, Albersheim P (1989) Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from walls of suspension-cultured rice cell. Carbohydr Res 185:261–277CrossRefGoogle Scholar
  30. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis thaliana identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701PubMedCrossRefGoogle Scholar
  31. Whitcombe AJ, O’Neill MA, Steffan W, Albersheim P, Darvill AG (1995) Structural characterization of the pectic polysaccharide, rhamnogalacturonan-II. Carbohydr Res 271:15–29PubMedCrossRefGoogle Scholar
  32. Wu AM, Rihouey C, Séveno M, Homblad E, Singh SK, Matsunaga T, Ishi T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-like glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731PubMedCrossRefGoogle Scholar
  33. Yapo BM, Lerouge P, Thibault J-F, Ralet M-C (2007) Pectins from citrus peel cell walls contain homogalacturonans homogeneous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polymer 69:426–435CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martial Séveno
    • 1
    • 6
  • Aline Voxeur
    • 1
  • Christophe Rihouey
    • 1
  • Ai-Min Wu
    • 2
    • 7
  • Tadashi Ishii
    • 3
  • Christian Chevalier
    • 4
  • Marie Christine Ralet
    • 5
  • Azeddine Driouich
    • 1
  • Alan Marchant
    • 2
    • 7
  • Patrice Lerouge
    • 1
    Email author
  1. 1.EA 4358, IFRMP 23, University of RouenMont Saint AignanFrance
  2. 2.Department of Forest Genetics and Plant PhysiologyUmeåSweden
  3. 3.Forestry and Forest Products Research InstituteIbarakiJapan
  4. 4.INRA, Unité Mixte de Recherche 619 Biologie du FruitVillenave d’OrnonFrance
  5. 5.UR1268 Biopolymères Interactions AssemblagesNantesFrance
  6. 6.CNRS UMR 5203, Plate-forme de Protéomique Fonctionnelle, Institut de Génomique Fonctionnelle, IFR3Montpellier Cedex 05France
  7. 7.School of Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations