, Volume 230, Issue 3, pp 543–552 | Cite as

Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes

  • Mié Ishikawa
  • Fumio Takahashi
  • Hisayoshi Nozaki
  • Chikako Nagasato
  • Taizo Motomura
  • Hironao Kataoka
Original Article


The new type blue light (BL) receptor aureochrome (AUREO) was recently discovered in a stramenopile alga, Vaucheria (Takahashi et al. Proc Natl Acad Sci USA 104(49):19625–19630, 2007). AUREO has a bZIP (basic region/leucine zipper) and BL-sensing light-oxygen-voltage (LOV) domain and functions as a BL-activated transcription factor. It mediates BL-induced branching and regulates the development of the sex organ in V. frigida. Although AUREO sequences have previously been found in Fucus and some diatoms, here we report that AUREO orthologs are commonly conserved in photosynthetic stramenopiles. Five AUREO orthologs were isolated from three stramenopile genera (Fucus, Ochromonas, and Chattonella). By BLAST search, several AUREO sequences were also detected in genomes in Aureococcus anophagefferens (Pelagophyceae). However, AUREO was not found in heterotrophic stramenopiles or in closely related phyla, such as haptophytes and cryptophytes, or in green plants. Stramenopiles do not possess phototropin, the well-known BL receptor for phototropism of green plants. From comparative analysis of LOV domains, together with kinship analysis of AUREO bZIP domains, AUREO can be regarded as the BL receptor specific to phototrophic stramenopiles. The evolution of AUREO and the phylogeny of LOV domains in stramenopiles and green plants are discussed.


Aureochrome (AUREO) BL receptor bZIP LOV Stramenopiles 





Blue light


Basic region/leucine zipper




Nonphototropic hypocotyl








White collar-1



We thank Dr. Akiko Yokoyama (Yamagata University, Yamagata, Japan) for helpful advice in construction of phylogenetic trees. We are also grateful to Dr. Ian Gleadall (Tohoku Bunka Gakuen University, Sendai, Japan) for his critical comments on the manuscript. This work was partially supported by Ministry of Education, Sports, Science, and Technology of Japan Grant #17084001 (to H.K.), and by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (to M.I.).

Supplementary material

425_2009_967_MOESM1_ESM.pdf (49 kb)
Supplementary material 1 (PDF 49 kb)


  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Abe M (1970) A method of inducing egg liberation in Fucus evanescens. Bot Mag Tokyo 83:254–255Google Scholar
  3. Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50:348–358PubMedGoogle Scholar
  4. Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  5. Bouget F-Y, Berger F, Brownlee C (1998) Position dependent control of cell fate in the Fucus embryo: role of intercellular communication. Development 125:1999–2008PubMedGoogle Scholar
  6. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  7. Briggs WR, Beck CF, Cashmore AR et al (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997PubMedCrossRefGoogle Scholar
  8. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182PubMedCrossRefGoogle Scholar
  9. Crosson S, Moffat K (2001) Structure of flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci USA 98:2995–3000PubMedCrossRefGoogle Scholar
  10. Crosson S, Rajagopal S, Moffat K (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10PubMedCrossRefGoogle Scholar
  11. Fischer-Arnold G (1963) Untersuchungen über die Chloroplastenbewegung bei Vaucheria sessilis. Protoplasma 56:495–520CrossRefGoogle Scholar
  12. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819PubMedCrossRefGoogle Scholar
  13. Grinberg A, Heath IB (1997) Direct evidence for Ca2+ regulation of hyphal branch induction. Fungal Genet Biol 22:127–139PubMedCrossRefGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  15. Hadley R, Hable WE, Kropf DL (2006) Polarization of the endomembrane system is an early event in fucoid zygote development. BMC Plant Biol 6:5PubMedCrossRefGoogle Scholar
  16. Haupt W, Schönfeld I (1962) Über das Wirkungsspektrum der “negativen Phototaxis” der Vaucheria-Chloroplasten. Ber Dtsch Bot Ges 75:14–23Google Scholar
  17. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and light sensor. Science 297:840–843PubMedCrossRefGoogle Scholar
  18. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189PubMedCrossRefGoogle Scholar
  19. Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464PubMedCrossRefGoogle Scholar
  20. Huala E, Oeller PW, Liscum E, Han I-S, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123PubMedCrossRefGoogle Scholar
  21. Imaizumi T, Kanegae T, Wada M (2000) Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell 12:81–95PubMedCrossRefGoogle Scholar
  22. Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1:15–26CrossRefGoogle Scholar
  23. Jaffe LF (1958) Tropistic responses of zygotes of the Fucaceae to polarized light. Exp Cell Res 15:282–299PubMedCrossRefGoogle Scholar
  24. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefGoogle Scholar
  25. Kagawa T (2003) The phototropin family as photoreceptors for blue light-induced chloroplast relocation. J Plant Res 116:77–82PubMedGoogle Scholar
  26. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141PubMedCrossRefGoogle Scholar
  27. Kataoka H (1975a) Phototropism in Vaucheria geminata I. The action spectrum. Plant Cell Physiol 16:427–437Google Scholar
  28. Kataoka H (1975b) Phototropism in Vaucheria geminate II. The mechanism of bending and branching. Plant Cell Physiol 16:439–448Google Scholar
  29. Kataoka H (1987) The light growth response of Vaucheria. A conditio sine qua non of the phototropic response? Plant Cell Physiol 28:61–71Google Scholar
  30. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  31. Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660PubMedCrossRefGoogle Scholar
  32. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefGoogle Scholar
  33. Lee K, Loros JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289:107–110PubMedCrossRefGoogle Scholar
  34. Matsuoka D, Tokutomi S (2005) Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc Natl Acad Sci USA 102:13337–13342PubMedCrossRefGoogle Scholar
  35. Motomura T (1994) Electron and immunofluorescence microscopy on the fertilization of Fucus distichus (Fucales, Phaeophyceae). Protoplasma 178:97–110CrossRefGoogle Scholar
  36. Nozaki H, Ito M, Watanabe MM, Takano H, Kuroiwa T (1997) Phylogenetic analysis of morphological species of Carteria (Volvocales, Chlorophyta) based on rbcL gene sequences. J Phycol 33:864–867CrossRefGoogle Scholar
  37. Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh KC, Lagarias JC, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA 95:15826–15830PubMedCrossRefGoogle Scholar
  38. Oltmanns F (1892) Über die photometrischen Bewegungen der Pflanzen. Flora (Jena) 75:183–266Google Scholar
  39. Pearson G, Serrāo EA, Cancela ML (2001) Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae. Eur J Phycol 36:359–366CrossRefGoogle Scholar
  40. Rosenvinge MLK (1889) Influence des agents extérieurs sur l’organisation polaire et dorsiventrale des plantes. Rev Gen Bot 1:53–62Google Scholar
  41. Saitou N, Nei M (1998) The Neighbor-joining method: a new method for reconstracting phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  42. Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735PubMedCrossRefGoogle Scholar
  43. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410PubMedCrossRefGoogle Scholar
  44. Schindler U, Menkens AE, Beckmamm H, Ecker JR, Cashmore AR (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11:1261–1273PubMedGoogle Scholar
  45. Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm-Engelmann, LeipzigGoogle Scholar
  46. Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA 38:13705–13709CrossRefGoogle Scholar
  47. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10 (Alvitec). Sinauer Associates, SunderlandGoogle Scholar
  48. Takahashi F, Hishinuma T, Kataoka H (2001) Blue light-induced branching in Vaucheria. Requirement of nuclear accumulation in the irradiated region. Plant Cell Physiol 42:274–285PubMedCrossRefGoogle Scholar
  49. Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci USA 104(49):19625–19630PubMedCrossRefGoogle Scholar
  50. Teyler BM, Tripathy S, Zhang X et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Nature 313:1261–1266Google Scholar
  51. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  52. Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 4:265–275PubMedCrossRefGoogle Scholar
  53. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastid. Proc Natl Acad Sci USA 99:15507–15512PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mié Ishikawa
    • 1
  • Fumio Takahashi
    • 1
  • Hisayoshi Nozaki
    • 2
  • Chikako Nagasato
    • 3
  • Taizo Motomura
    • 3
  • Hironao Kataoka
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoTokyoJapan
  3. 3.Muroran Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityMuroranJapan

Personalised recommendations