, Volume 229, Issue 5, pp 1135–1146 | Cite as

Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L.

  • Simone Witte
  • Sofia Moco
  • Jacques Vervoort
  • Ulrich Matern
  • Stefan MartensEmail author
Original Article


Five glucosyltransferases were cloned by RT-PCR amplification using total RNA from Hieracium pilosella L. (Asteraceae) inflorescences as template. Expression was accomplished in Escherichia coli, and three of the HIS-tagged enzymes, UGT90A7, UGT95A1, and UGT72B11 were partially purified and functionally characterised as UDP-glucose:flavonoid O-glucosyltransferases. Both UGT90A7 and UGT95A1 preferred luteolin as substrate, but possessed different regiospecificity profiles. UGT95A1 established a new subgroup within the UGT family showing high regiospecificity towards the C-3′ hydroxyl group of luteolin, while UGT90A7 primarily yielded the 4′-O-glucoside, but concomitantly catalysed also the formation of the 7-O-glucoside, which could account for this flavones glucoside in H. pilosella flower heads. Semi quantitative expression profiles revealed that UGT95A1 was expressed at all stages of inflorescence development as well as in leaf and stem tissue, whereas UGT90A7 transcript abundance was nearly limited to flower tissue and started to develop with the pigmentation of closed buds. Other than these enzymes, UGT72B11 showed rather broad substrate acceptance, with highest activity towards flavones and flavonols which have not been reported from H. pilosella. As umbelliferone was also readily accepted, this enzyme could be involved in the glucosylation of coumarins and other metabolites.


Asteraceae Flavonoids Glucosyltransferase Hieracium Regiospecificity Substrate specificity 







Plant secondary product glycosyltransferases


Rapid amplification of cDNA ends


High-speed counter current chromatography



This work was supported by the Deutsche Forschungsgemeinschaft and Dr. Sofia Moco is financed by the EU project “META-PHOR” (FOOD-CT-2006-036220).

Supplementary material

425_2009_902_MOESM1_ESM.tif (316 kb)
Chemical structures of flavones occurring in H. pilosella (TIFF 316 kb)
425_2009_902_MOESM2_ESM.tif (66 kb)
Alignment of H. pilosella UGT polypeptides using the ClustalW program. The conserved PSPG motif is shown in bold letters. UGT72B11 (GenBank accession number EU561016), UGT88A8 (EU561017), UG88A9 (EU561018), UGT90A7 (EU561019), UGT95A1 (EU561020) (TIFF 65 kb)
425_2009_902_MOESM3_ESM.doc (104 kb)
Abbreviations and GenBank accession numbers (DOC 103 kb)
425_2009_902_MOESM4_ESM.doc (132 kb)
Supplementary Table 1S (DOC 132 kb)
425_2009_902_MOESM5_ESM.doc (145 kb)
Supplementary Table 2S (DOC 145 kb)
425_2009_902_MOESM6_ESM.doc (134 kb)
Supplementary Table 3S (DOC 134 kb)


  1. Arts ICW, Hollman PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81 suppl:317S–325SGoogle Scholar
  2. Bate-Smith EC, Sell PD, West C (1968) Chemistry and taxonomy of Hieracium L. and Pilosella Hill. Phytochemistry 7:1165–1169CrossRefGoogle Scholar
  3. Beaux D, Fleurentin J, Mortier F (1999) Effect of extracts of Orthosiphon stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) Spreng. in rats. Phytother Res 13:222–225PubMedCrossRefGoogle Scholar
  4. Bolle P, Bello U, Faccendini P, Martinoli L, Tita B (1993) Hieracium pilosella L.: pharmacological effect of ethanol extract. Pharmacol Res 27 suppl 1:29–30CrossRefGoogle Scholar
  5. Bowles D, Isayenkova J, Lim E, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263PubMedCrossRefGoogle Scholar
  6. Bowles D, Lim E, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597PubMedCrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  8. Brazier-Hicks M, Edwards R (2005) Functional importance of the family 1 glucosyltransferase UGT72B1 in the metabolism of xenobiotics in Arabidopsis thaliana. Plant J 42:556–566PubMedCrossRefGoogle Scholar
  9. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim E, Bowles DJ, Davies GJ, Edwards R (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci USA 104:20238–20243PubMedCrossRefGoogle Scholar
  10. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferses based on amino acid sequence similarities. Biochem J 326:929–942PubMedGoogle Scholar
  11. Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, de Lima TCM, Proença da Cunha A (2006) Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytother Res 20:1067–1073PubMedCrossRefGoogle Scholar
  12. Coleta M, Campos MG, Cotrim MD, de Lima TCM, Proença da Cunha A (2008) Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav Brain Res 189:75–82PubMedCrossRefGoogle Scholar
  13. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  14. Dombrowicz E, Świątek L, Kopycki W (1992) Phenolic acids in Helichrysi inflorescentia and Herba Hieracii pilosellae. Pharmazie 47:469–470Google Scholar
  15. Duquénois P, Greib É (1953) Sur le principe antibiotique isolé de la Piloselle, Hieracium pilosella L. C R Hebd Séances Acad Sci 237:1354–1355PubMedGoogle Scholar
  16. Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from Gentian. Plant Physiol 132:1652–1663PubMedCrossRefGoogle Scholar
  17. Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549PubMedCrossRefGoogle Scholar
  18. Gawrońska-Grzywacz M, Krzaczek T (2007) Identification and determination of triterpenoids in Hieracium pilosella L. J Sep Sci 30:746–750PubMedCrossRefGoogle Scholar
  19. Haag-Berrurier M, Duquénois P (1962) Extraction et caractérisation physicochimique de la lutéoline dans les fleurs de la Piloselle, Hieracium pilosella L. C R Hebd Séances Acad Sci 254:3419–3421PubMedGoogle Scholar
  20. Haag-Berrurier M, Duquénois P (1963) Sur la présence d’un 7-β-glucoside de la lutéoline dans les feuilles de la Piloselle, Hieracium pilosella L. C R Hebd Séances Acad Sci 257:3239–3241PubMedGoogle Scholar
  21. Harborne JB (1978) The rare flavone isoetin as a yellow flower pigment in Heywoodiella oligocephala and in other Cichorieae. Phytochemistry 17:915–917CrossRefGoogle Scholar
  22. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504PubMedCrossRefGoogle Scholar
  23. Hasrat JA, Pieters L, Claeys M, Vlietinck A (1997) Adenosine-1 active ligands: cirsimarin, a flavone glycoside from Microtea debilis. J Nat Prod 60:638–641PubMedCrossRefGoogle Scholar
  24. Hefner T, Arend J, Warzecha H, Siems K, Stöckigt J (2002) Arbutin synthase, a novel member of the NRD1β glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics. Bioorg Med Chem 10:1731–1741PubMedCrossRefGoogle Scholar
  25. Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5:41–49PubMedCrossRefGoogle Scholar
  26. Ingkaninan K, Ijzerman AP, Verpoorte R (2000) Luteolin, a compound with adenosine A1 receptor-binding activity, and chromone and dihydronaphthalenone constituents from Senna siamea. J Nat Prod 63:315–317PubMedCrossRefGoogle Scholar
  27. Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T (2006) Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry 67:1598–1612PubMedCrossRefGoogle Scholar
  28. Ji X, Melman N, Jacobson KA (1996) Interactions of flavonoids and other phytochemicals with adenosine receptors. J Med Chem 39:781–788PubMedCrossRefGoogle Scholar
  29. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174PubMedCrossRefGoogle Scholar
  30. Kamsteeg J, van Brederode J, van Nigtevecht G (1978) Identification and properties of UDP-glucose: cyanidin-3-O-glucosyltransferase isolated from petals of the Red Champion (Silene dioica). Biochem Genet 16:1045–1058PubMedCrossRefGoogle Scholar
  31. Kogawa K, Kato N, Kazuma K, Noda N, Suzuki M (2007) Purification and characterization of UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase from Clitoria ternatea. Planta 226:1501–1509PubMedCrossRefGoogle Scholar
  32. Kramer CM, Prata RTN, Willits MG, De Luca V, Steffens JC, Graser G (2003) Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64:1069–1076PubMedCrossRefGoogle Scholar
  33. Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim E, Vaistij FE, Bowles DJ (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295PubMedCrossRefGoogle Scholar
  34. Li Y, Baldauf S, Lim E, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343PubMedCrossRefGoogle Scholar
  35. Lim E, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J 23:2915–2922PubMedCrossRefGoogle Scholar
  36. Lim E, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349PubMedCrossRefGoogle Scholar
  37. Lim E, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiol 13:139–145CrossRefGoogle Scholar
  38. Lim E, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87:623–631PubMedCrossRefGoogle Scholar
  39. Lim E, Jackson RG, Bowles DJ (2005) Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett 579:2802–2806PubMedCrossRefGoogle Scholar
  40. Loutre C, Dixon DP, Brazier M, Slater M, Cole DJ, Edwards R (2003) Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J 34:485–493PubMedCrossRefGoogle Scholar
  41. Lunkenbein S, Bellido M, Aharoni A, Salentijn EMJ, Kaldenhoff R, Coiner HA, Muñoz-Blanco J, Schwab W (2006) Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol 140:1047–1058PubMedCrossRefGoogle Scholar
  42. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269PubMedCrossRefGoogle Scholar
  43. Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407PubMedCrossRefGoogle Scholar
  44. Messner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146PubMedGoogle Scholar
  45. Moco S, Tseng L-H, Spraul M, Chen Z, Vervoort J (2006) Building-up a comprehensive database of flavonoids based on nuclear magnetic resonance data. Chromatographia 64:503–508CrossRefGoogle Scholar
  46. Modlinger PS, Welch WJ (2003) Adenosine A1 receptor antagonists and the kidney. Curr Opin Nephrol Hypertens 12:497–502PubMedCrossRefGoogle Scholar
  47. Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang X, Dixon RA (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518PubMedCrossRefGoogle Scholar
  48. Nagashima S, Hirotani M, Yoshikawa T (2000) Purification and characterization of UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from Scutellaria baicalensis Georgi. cell suspension cultures. Phytochemistry 53:533–538PubMedCrossRefGoogle Scholar
  49. Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590PubMedCrossRefGoogle Scholar
  50. Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435:757–758PubMedCrossRefGoogle Scholar
  51. Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103:11075–11080PubMedCrossRefGoogle Scholar
  52. Paquette S, Lindberg Møller B, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413PubMedCrossRefGoogle Scholar
  53. Ross J, Li Y, Lim E, Bowles DJ (2001) Protein family review: higher plant glycosyltransferases. Genome Biol 2:3004.1–3004.6CrossRefGoogle Scholar
  54. Sawada S, Suzuki H, Ichimaida F, Yamaguchi M, Iwashita T, Fukui Y, Hemmi H, Nishino T, Nakayama T (2005) UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers: enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J Biol Chem 280:899–906PubMedCrossRefGoogle Scholar
  55. Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30PubMedCrossRefGoogle Scholar
  56. Stracke R, De Vos RCH, Bartekniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229:427–445PubMedCrossRefGoogle Scholar
  57. Suzuki H, Hayase H, Nakayama A, Yamaguchi I, Asami T, Nakajima M (2007) Identification and characterization of an Ipomoea nil glucosyltransferase which metabolizes some phytohormones. Biochem Biophys Res Commun 361:980–986PubMedCrossRefGoogle Scholar
  58. Tian L, Blount JW, Dixon RA (2006) Phenylpropanoid glycosyltransferases from osage orange (Maclura pomifera) fruit. FEBS Lett 580:6915–6920PubMedCrossRefGoogle Scholar
  59. Trouillas P, Calliste C, Allais D, Simon A, Marfak A, Delage C, Duroux J (2003) Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chem 80:399–407CrossRefGoogle Scholar
  60. Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386PubMedCrossRefGoogle Scholar
  61. Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–519PubMedCrossRefGoogle Scholar
  62. Wang F, Huen MSY, Tsang SY, Xue H (2005) Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord 4:575–585PubMedCrossRefGoogle Scholar
  63. Welch WJ (2002) Adenosine A1 receptor antagonists in the kidney: effects in fluid-retaining disorders. Curr Opin Pharmacol 2:165–170PubMedCrossRefGoogle Scholar
  64. Yabuya T, Yamaguchi M, Imayama T, Katoh K, Ino I (2002) Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata. Plant Sci 162:779–784CrossRefGoogle Scholar
  65. Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:14932–14941PubMedCrossRefGoogle Scholar
  66. Zidorn C, Gottschlich G, Stuppner H (2002) Chemosystematic investigations on phenolics from flowerheads of Central european taxa of Hieracium sensu lato (Asteraceae). Plant Syst Evol 231:39–58CrossRefGoogle Scholar
  67. Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Simone Witte
    • 1
  • Sofia Moco
    • 2
  • Jacques Vervoort
    • 2
  • Ulrich Matern
    • 1
  • Stefan Martens
    • 1
    Email author
  1. 1.Institut Für Pharmazeutische BiologiePhilipps-Universität MarburgMarburgGermany
  2. 2.Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations