, 229:457

A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum

  • Lan-Qing Ma
  • Xiao-Bin Pang
  • Hai-Yan Shen
  • Gao-Bin Pu
  • Hua-Hong Wang
  • Cai-Yan Lei
  • Hong Wang
  • Guo-Feng Li
  • Ben-Ye Liu
  • He-Chun Ye
Original Article


A type III polyketide synthase cDNA and the corresponding gene (PcPKS2) were cloned from Polygonum cuspidatum Sieb. et Zucc. Sequencing results showed that the ORF of PcPKS2 was interrupted by three introns, which was an unexpected finding because all type III PKS genes studied so far contained only one intron at a conserved site in flowering plants, except for an Antirrhinum majus chalcone synthase gene. Besides the unusual gene structure, PcPKS2 showed some interesting characteristics: (1) the CHS “gatekeepers” Phe215 and Phe265 are uniquely replaced by Leu and Cys, respectively; (2) recombinant PcPKS2 overexpressed in Escherichia coli efficiently afforded 4-coumaroyltriacetic acid lactone (CTAL) as a major product along with bis-noryangonin (BNY) and p-hydroxybenzalacetone at low pH; however, it effectively yielded p-hydroxybenzalacetone as a dominant product along with CTAL and BNY at high pH. Beside p-hydroxybenzalacetone, CTAL and BNY, a trace amount of naringenin chalcone could be detected in assays at different pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. PcPKS2 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrate. DNA gel blot analysis indicated that there are two to four PcPKS2 copies in the P. cuspidatum genome. RNA gel blot analysis revealed that PcPKS2 is highly expressed in the rhizomes and in young leaves, but not in the roots of the plant. PcPKS2 transcripts in leaves were induced by pathogen infection, but not by wounding.


Benzalacetone synthase p-Coumaroyl triacetic acid synthase Intron Polygonum Polyketide synthase 



Aloesone synthase


Benzalacetone synthase


Chalcone synthase


Coenzyme A


p-Coumaroyl triacetic acid synthase


Liquid chromatography electron spray ionization mass spectrometry


Octaketide synthase


Polyketide synthase


Stilbene synthase


  1. Abe I, Takahashi Y, Morita H, Noguchi H (2001) Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. Eur J Biochem 268:3354–3359PubMedCrossRefGoogle Scholar
  2. Abe I, Takahashi Y, Noguchi H (2002) Enzymatic formation of an unnatural C(6)-C(5) aromatic polyketide by plant type III polyketide synthases. Org Lett 4:3623–3626PubMedCrossRefGoogle Scholar
  3. Abe I, Sano Y, Takahashi Y, Noguchi H (2003) Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases. J Biol Chem 278:25218–25226PubMedCrossRefGoogle Scholar
  4. Abe I, Utsumi Y, Oguro S, Noguchi H (2004) The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. FEBS Lett 562:171–176PubMedCrossRefGoogle Scholar
  5. Abe I, Oguro S, Utsumi Y, Sano Y, Noguchi H (2005) Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J Am Chem Soc 127:12709–12716PubMedCrossRefGoogle Scholar
  6. Abe T, Morita H, Noma H, Kohno T, Noguchi H, Abe I (2007) Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorg Med Chem 17:3161–3166CrossRefGoogle Scholar
  7. Akiyama T, Shibuya M, Liu HM, Ebizuka Y (1999) p-Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii. Eur J Biochem 263:834–839PubMedCrossRefGoogle Scholar
  8. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110PubMedCrossRefGoogle Scholar
  9. Beekwilder J, van der Meer IM, Sibbesen O, Broekgaarden M, Qvist I, Mikkelsen JD, Hall RD (2007) Microbial production of natural raspberry ketone. Biotechnol J 2:1270–1279PubMedCrossRefGoogle Scholar
  10. Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme a esters. Anal Biochem 302:305–312PubMedCrossRefGoogle Scholar
  11. Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Comm 346:583–590PubMedCrossRefGoogle Scholar
  12. Borejsza-Wysocki W, Hrazdina G (1994) Biosynthesis of p-hydroxyphenylbutan-2-one in raspberry fruits and tissue culture. Phytochemistry 35:623–628CrossRefGoogle Scholar
  13. Borejsza-Wysocki W, Hrazdina G (1996) Aromatic polyketide synthases (purification, characterization, and antibody development to benzalacetone synthase from raspberry fruits). Plant Physiol 110:791–799PubMedGoogle Scholar
  14. Buchanan BB, Gruissem W, Jones RL (2002) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, WaldorfGoogle Scholar
  15. Caldwell MM, Robberecht R, Fint SD (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445–450CrossRefGoogle Scholar
  16. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedCrossRefGoogle Scholar
  17. Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol 42:79–92PubMedCrossRefGoogle Scholar
  18. Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784PubMedCrossRefGoogle Scholar
  19. Hegde VR, Pu H, Patel M, Black T, Soriano A, Zhao W, Gullo VP, Chan TM (2004) Two new bacterial DNA primase inhibitors from the plant Polygonum cuspidatum. Bioorg Med Chem 14:2275–2277CrossRefGoogle Scholar
  20. Hrazdina G, Kreuzaler F, Hahlbrock K, Grisebach H (1976) Substrate specificity of flavanone synthase from cell suspension cultures of parsley and structure of release products in vitro. Arch Biochem Biophys 175:392–399PubMedCrossRefGoogle Scholar
  21. James DW Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319PubMedCrossRefGoogle Scholar
  22. Jiang C, Schommer CK, Kim SY, Suh DY (2006) Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry 67:2531–2540PubMedCrossRefGoogle Scholar
  23. Kajikawa M, Yamaoka S, Yamato KT, Kanamaru H, Sakuradani E, Shimizu S, Fukuzawa H, Ohyama K (2003a) Functional analysis of a beta-ketoacyl-CoA synthase gene, MpFAE2, by gene silencing in the liverwort Marchantia polymorpha L. Biosci Biotech Bioch 67:605–612CrossRefGoogle Scholar
  24. Kajikawa M, Yamato KT, Kanamaru H, Sakuradani E, Shimizu S, Fukuzawa H, Sakai Y, Ohyama K (2003b) MpFAE3, a beta-ketoacyl-CoA synthase gene in the liverwort Marchantia polymorpha L., is preferentially involved in elongation of palmitic acid to stearic acid. Biosci Biotech Bioch 67:1667–1674CrossRefGoogle Scholar
  25. Kauppinen S (1992) Structure and expression of the Kas12 gene encoding a beta-ketoacyl-acyl carrier protein synthase I isozyme from barley. J Biol Chem 267:23999–24006PubMedGoogle Scholar
  26. Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855PubMedCrossRefGoogle Scholar
  27. Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167PubMedCrossRefGoogle Scholar
  28. Mallet J, Houhou L, Pajak F, Oda Y, Cervini R, Bejanin S, Berrard S (1998) The cholinergic locus: ChAT and VAChT genes. J Physiol Paris 92:145–147PubMedCrossRefGoogle Scholar
  29. Matsuda H, Shimoda H, Uemura T, Ueda T, Yamahara J, Yoshikawa M (1999) Chemical constituents from the leaves of Hydrangea macrophylla var. thunbergii (III): Absolute stereostructures of hydramacrosides A and B, secoiridoid glucoside complexes with inhibitory activity on histamine release. Chem Pharm Bull 47:1753–1758PubMedGoogle Scholar
  30. Morita H, Takahashi Y, Noguchi H, Abe I (2000) Enzymatic formation of unnatural aromatic polyketides by chalcone synthase. Biochem Biophys Res Comm 279:190–195PubMedCrossRefGoogle Scholar
  31. Nonomura S, Kanagawa H, Makimoto A (1963) Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-J O-Kon. (Polygonum Cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi 83:988–990PubMedGoogle Scholar
  32. Page RD (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  33. Porebski S, Bailey L, Baum B (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15CrossRefGoogle Scholar
  34. Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294PubMedCrossRefGoogle Scholar
  35. Reimold U, Kroger M, Kreuzaler F, Hahlbrock K (1983) Coding and 3’ non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J 2:1801–1805PubMedGoogle Scholar
  36. Samappito S, Page JE, Schmidt J, De-Eknamkul W, Kutchan TM (2003) Aromatic and pyrone polyketides synthesized by a stilbene synthase from Rheum tataricum. Phytochemistry 62:313–323PubMedCrossRefGoogle Scholar
  37. Sambrooke J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. Schröder J (1997) A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci 2:373–378CrossRefGoogle Scholar
  39. Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202:429–434CrossRefGoogle Scholar
  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  41. Todd J, Post-Beitenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130PubMedCrossRefGoogle Scholar
  42. Tosi M (1998) Molecular genetics of C1 inhibitor. Immunobiology 199:358–365PubMedGoogle Scholar
  43. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832PubMedGoogle Scholar
  44. Verma D (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4:373–382PubMedCrossRefGoogle Scholar
  45. Xiao K, Xuan L, Xu Y, Bai D, Zhong D (2002) Constituents from Polygonum cuspidatum. Chem Pharm Bull 50:605–608PubMedCrossRefGoogle Scholar
  46. Yi T, Zhang H, Cai Z (2007) Analysis of rhizoma Polygoni Cuspidati by HPLC and HPLC-ESI/MS. Phytochem Anal 18:387–392PubMedCrossRefGoogle Scholar
  47. Yoshikawa M, Ueda T, Matsuda H, Yamahara J, Murakami N (1994) Absolute stereostructures of hydramacrosides A and B, new bioactive secoiridoid glucoside complexes from the leaves of Hydrangea macrophylla Seringe var. thunbergii Makino. Chem Pharm Bull 42:1691–1693PubMedGoogle Scholar
  48. Zheng D, Hrazdina G (2008) Molecular and biochemical characterization of benzalacetone synthase and chalcone synthase genes and their proteins from raspberry (Rubus idaeus L.). Arch Biochem Biophys 470:139–145PubMedCrossRefGoogle Scholar
  49. Zheng D, Schroder G, Schroder J, Hrazdina G (2001) Molecular and biochemical characterization of three aromatic polyketide synthase genes from Rubus idaeus. Plant Mol Biol 46:1–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lan-Qing Ma
    • 1
    • 2
  • Xiao-Bin Pang
    • 2
  • Hai-Yan Shen
    • 1
  • Gao-Bin Pu
    • 1
  • Hua-Hong Wang
    • 1
  • Cai-Yan Lei
    • 1
  • Hong Wang
    • 1
  • Guo-Feng Li
    • 1
  • Ben-Ye Liu
    • 1
  • He-Chun Ye
    • 1
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyThe Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.College of Plant ScienceJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations