Planta

, Volume 229, Issue 2, pp 311–321 | Cite as

Activity of an atypical Arabidopsis thaliana pectin methylesterase

  • Sarah Dedeurwaerder
  • Laurence Menu-Bouaouiche
  • Alain Mareck
  • Patrice Lerouge
  • François Guerineau
Original Article

Abstract

An Arabidopsis thaliana pectin methylesterase that was not predicted to contain any signaling sequence was produced in E. coli and purified using a His tag added at its N-terminus. The enzyme demethylesterified Citrus pectin with a Km of 0.86 mg/ml. The enzyme did not require salt for activity and was found to be relatively temperature-sensitive. The precipitation of enzyme-treated pectin by CaCl2 suggested that the enzyme had a blockwise mode of pectin demethylesterification. A purified kiwi (Actinidia chinensis) pectin methylesterase inhibitor had no effect on the activity of the enzyme whereas it strongly inhibited a flax pectin methylesterase. A model of the protein structure revealed that an extra amino acid sequence in this particular Arabidopsis pectin methylesterase could form a ß-strand outside the core structure, which might be preventing the inhibitor from binding the protein.

Keywords

3-D modelling Arabidopsis Cell wall Pectin methylesterase Pectin methylesterase inhibitor 

Abbreviations

DE

Degree of esterification

PME

Pectin methylesterase

PMEI

Pectin methylesterase inhibitor

References

  1. Al-Qsous S, Carpentier E, Klein-Eude D, Burel C, Mareck A, Dauchel H, Gomord V, Balangé AP (2004) Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta 219:369–378PubMedCrossRefGoogle Scholar
  2. Balestrieri C, Castaldo D, Giovane A, Quagliuolo L, Servillo L (1990) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur J Biochem 193:183–187PubMedCrossRefGoogle Scholar
  3. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226PubMedCrossRefGoogle Scholar
  4. Castillejo C, de la Fuente JI, Iannetta P, Botella MA, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 398:909–918CrossRefGoogle Scholar
  5. Castro SM, Van Loey A, Saraiva JA, Smout C, Hendrickx M (2004) Activity and process stability of purified green pepper (Capsicum annuum) pectin methylesterase. J Agric Food Chem 52:5724–5729PubMedCrossRefGoogle Scholar
  6. Catoire L, Pierron M, Morvan C, Hervé du Penhoat C, Goldberg R (1998) Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR Spectroscopy. Implications in cell wall expansion. J Biol Chem 273:33150–33156PubMedCrossRefGoogle Scholar
  7. Christensen TMIE, Nielsen JE, Kreiberg JD, Rasmussen P, Mikkelsen JD (1998) Pectin methyl esterase from orange fruit: characterization and localisation by in-situ hybridization and immunohistochemistry. Planta 206:493–503PubMedCrossRefGoogle Scholar
  8. Ciardiello MA, D’Avino R, Amoresano A, Tuppo L, Carpentieri A, Carratore V, Tamburrini M, Giovane A, Pucci P, Camardella L (2008) The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins 71:195–206PubMedCrossRefGoogle Scholar
  9. Corpet F (1998) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefGoogle Scholar
  10. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WBIII, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383PubMedCrossRefGoogle Scholar
  11. De Assis SA, Martins AB, Guaglianoni DG, a Oliveira OM (2002) Partial purification and characterization of pectin methylesterase from acerola (Malpighia glabra L.). J Agric Food Chem 50:4103–4107PubMedCrossRefGoogle Scholar
  12. De-la-Peña C, Badri DV, Vivanco JM (2008) Novel role for pectin methylesterase in Arabidopsis: a new function showing ribosome-inactivating protein (RIP) activity. Biochim Biophys Acta 1780:773–783PubMedGoogle Scholar
  13. Denès JM, Baron A, Renard CMGC, Péan C, Drilleau JF (2000) Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydr Res 327:385–393PubMedCrossRefGoogle Scholar
  14. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858PubMedCrossRefGoogle Scholar
  15. Ding JL, Hsu JS, Wang MM, Tzen JT (2002) Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig (Ficus awkeotsang) achenes. J Agric Food Chem 50:2920–2925PubMedCrossRefGoogle Scholar
  16. Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, Ivanov PA, Ravin NV, Skryabin KG, Mäkinen KM, Klimyuk VI, Gleba YY, Atabekov JG (2006) Role of leader sequence in tobacco pectin methylesterase secretion. FEBS Lett 580:3329–3334PubMedCrossRefGoogle Scholar
  17. Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads by QUARTET1, a pectin methylesterase. Plant Physiol 142:1004–1013PubMedCrossRefGoogle Scholar
  18. Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 26:3879–3887PubMedCrossRefGoogle Scholar
  19. Gaffé J, Morvan C, Jauneau A, Demarty M (1992) Partial purification of flax cell wall pectin methylesterase. Phytochemistry 31:761–765Google Scholar
  20. Giovane A, Servillo L, Balestrieri C, Raiola A, D’Avino R, Tamburrini M, Ciardiello MA, Camardella L (2004) Pectin methylesterase inhibitor. Biochim Biophys Acta 1696:245–252PubMedGoogle Scholar
  21. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar
  22. Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447PubMedCrossRefGoogle Scholar
  23. Hou WC, Chang WH, Jiang CM (1999) Qualitative distinction of carboxyl group distributions in pectins with ruthenium red. Bot Bull Acad Sin 40:115–119Google Scholar
  24. Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW (2001) Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305:951–960PubMedCrossRefGoogle Scholar
  25. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596PubMedCrossRefGoogle Scholar
  26. Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249PubMedCrossRefGoogle Scholar
  27. Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11:359–367PubMedCrossRefGoogle Scholar
  28. Klavons JA, Benett RD (1986) Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J Agric Food Chem 34:597–599CrossRefGoogle Scholar
  29. Limberg G, Körner R, Buchholt HC, Christensen TMIE, Roepstorff P, Mikkelsen JD (2000) Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. Niger. Carbohydr Res 327:293–307PubMedCrossRefGoogle Scholar
  30. Louvet R, Cavel E, Gutierrez L, Guénin S, Roger D, Gillet F, Guerineau F, Pelloux J (2006) Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224:782–791PubMedCrossRefGoogle Scholar
  31. Ly-Nguyen B, Van Loey AM, Smout C, Verlent I, Duvetter T, Hendrickx ME (2004) Effect of intrinsic and extrinsic factors on the interaction of plant pectin methylesterase and its inhibitor from kiwi fruit. J Agric Food Chem 52:8144–8150PubMedCrossRefGoogle Scholar
  32. Markovic O, Janecek S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295PubMedCrossRefGoogle Scholar
  33. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419PubMedCrossRefGoogle Scholar
  34. Nari J, Noat G, Ricard J (1991) Pectin methylesterase, metal ions and plant cell-wall extension. Hydrolysis of pectin by plant cell-wall pectin methylesterase. Biochem J 279:343–350PubMedGoogle Scholar
  35. Nicholas KB, Nicholas HB Jr, Deerfield DWII (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet News 4(2):1–4Google Scholar
  36. Nishimura A, Moritai M, Nishimura Y, Sugino Y (1990) A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res 18:6169PubMedCrossRefGoogle Scholar
  37. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  38. Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, Bellincampi D (2004) Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 557:199–203PubMedCrossRefGoogle Scholar
  39. Richard L, Qin LX, Goldberg R (1996) Clustered genes within the genome of Arabidopsis thaliana encoding pectin methylesterase-like enzymes. Gene 170:207–211PubMedCrossRefGoogle Scholar
  40. Rico D, Martin-Diana AB, Barry-Ryan C, Henehan GTM, Frias JM (2007) Simultaneous modelling of the thermal degradation kinetics of pectin methylesterase in letucce (Lactuca sativa L.) and carrot (Daucus carota L.) extracts: analysis of seasonal variation and tissue type. Biosci Biotechnol Biochem 71:2383–2392PubMedCrossRefGoogle Scholar
  41. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide- related signaling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  42. Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143PubMedCrossRefGoogle Scholar
  43. Savary BJ, Hotchkiss AT, Cameron RG (2002) Characterization of a salt-independent pectin methylesterase purified from valencia orange peel. J Agric Food Chem 50:3553–3558PubMedCrossRefGoogle Scholar
  44. Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91PubMedCrossRefGoogle Scholar
  45. Van Den Broeck I, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000) Effect of temperature and/or pressure on tomato pectinesterase activity. J Agric Food Chem 48:551–558CrossRefGoogle Scholar
  46. Warren ME, Kester H, Benen J, Colangelo J, Visser J, Bergmann C, Orlando R (2002) Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydr Res 337:803–812PubMedCrossRefGoogle Scholar
  47. Wen F, Zhu Y, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140PubMedCrossRefGoogle Scholar
  48. Wicker L, Ackerley JL, Corredig M (2002) Clarification of juice by thermolabile valencia pectinmethylesterase is accelerated by cations. J Agric Food Chem 50:4091–4095PubMedCrossRefGoogle Scholar
  49. Willats WGT, Orfila C, Limberg G, Buchholti HC, van Alebeek GJWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413PubMedCrossRefGoogle Scholar
  50. Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sarah Dedeurwaerder
    • 1
    • 3
  • Laurence Menu-Bouaouiche
    • 2
  • Alain Mareck
    • 2
  • Patrice Lerouge
    • 2
  • François Guerineau
    • 1
  1. 1.Université de Picardie Jules VerneAmiensFrance
  2. 2.Laboratoire Glycobiologie et Transports chez les Végétaux, FRE CNRS 3090, IFRMP23, Faculté des Sciences Université de RouenMont-Saint-Aignan CedexFrance
  3. 3.Laboratoire d’épigénétique du Cancer, Faculté de Médecine Université Libre de BruxellesBrusselsBelgium

Personalised recommendations