, Volume 228, Issue 5, pp 709–723 | Cite as

The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis

  • Roderick W. Kumimoto
  • Luc Adam
  • Graham J. Hymus
  • Peter P. Repetti
  • T. Lynne  Reuber
  • Colleen M. Marion
  • Frederick D. Hempel
  • Oliver J. RatcliffeEmail author
Original Article


Accumulating evidence supports a role for members of the plant Nuclear Factor Y (NF-Y) family of CCAAT-box binding transcription factors in the regulation of flowering time. In this study we have used a genetic approach to show that the homologous proteins NF-YB3 and NF-YB2 have comparable activities and play additive roles in the promotion of flowering, specifically under inductive photoperiodic conditions. We demonstrate that NF-YB2 and NF-YB3 are both essential for the normal induction of flowering by long-days and act through regulation of the expression of FLOWERING LOCUS T (FT). Using an ELISA-based in-vitro assay, we provide a novel demonstration that plant NF-YB subunits are capable of directly binding to a CCAAT-box containing region of the FLOWERING LOCUS T promoter as part of an NF-Y trimer in combination with the yeast HAP2 and HAP5 subunits. These results support an emerging model in which NF-Y complexes provide a component of the DNA target specificity for transcriptional regulators such as CONSTANS.


Flowering time NF-Y CONSTANS FT CCAAT-box 



Nuclear Factor Y


Heme Activator Protein











We thank Alemu Belachew, Han-Chang Chang and Megan McPartland, for excellent experimental assistance. Hans Holtan for assistance with statistical analysis, and Shiv Tiwari, Neal Gutterson, Rajnish Khanna, Jacqueline Heard, Gabriela Vaduva, Venkatramana Pegadaraju and Michael Luethy for critical discussion and comments on the manuscript.


  1. Bechtold N, Jolivet S, Voisin R, Pelletier G (2003) The endosperm and the embryo of Arabidopsis thaliana are independently transformed through infiltration by Agrobacterium tumefaciens. Transgenic Res 12:509–517PubMedCrossRefGoogle Scholar
  2. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476PubMedCrossRefGoogle Scholar
  3. Bernier G, Perilleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16PubMedCrossRefGoogle Scholar
  4. Bezhani S, Sherameti I, Pfannschmidt T, Oelmuller R (2001) A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter. J Biol Chem 276:23785–23789PubMedCrossRefGoogle Scholar
  5. Bi W, Wu L, Coustry F, de Crombrugghe B, Maity SN (1997) DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem 272:26562–26572PubMedCrossRefGoogle Scholar
  6. Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599PubMedCrossRefGoogle Scholar
  7. Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212:563–578PubMedCrossRefGoogle Scholar
  8. Bucher P, Trifonov EN (1988) CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn 5:1231–1236PubMedGoogle Scholar
  9. Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105PubMedCrossRefGoogle Scholar
  10. Carre IA, Kay SA (1995) Multiple DNA-protein complexes at a circadian-regulated promoter element. Plant Cell 7:2039–2051PubMedCrossRefGoogle Scholar
  11. Chen NZ, Zhang XQ, Wei PC, Chen QJ, Ren F, Chen J, Wang XC (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol 40:1083–1089PubMedGoogle Scholar
  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  13. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17PubMedCrossRefGoogle Scholar
  14. Dang VD, Bohn C, Bolotin-Fukuhara M, Daignan-Fornier B (1996) The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178:1842–1849PubMedGoogle Scholar
  15. Edwards D, Murray JA, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117:1015–1022PubMedCrossRefGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Forsburg SL, Guarente L (1988) Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol Cell Biol 8:647–654PubMedGoogle Scholar
  18. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. Embo J 18:4679–4688PubMedCrossRefGoogle Scholar
  19. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedGoogle Scholar
  20. Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G (1985) G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. Nature 313:323–325PubMedCrossRefGoogle Scholar
  21. Gusmaroli G, Tonelli C, Mantovani R (2001) Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsis thaliana. Gene 264:173–185PubMedCrossRefGoogle Scholar
  22. Gusmaroli G, Tonelli C, Mantovani R (2002) Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283:41–48PubMedCrossRefGoogle Scholar
  23. Ito T, Fujimoto Y, Nakayama T, Iwabuchi M (1995) A far-upstream sequence of the wheat histone H3 promoter functions differently in rice and tobacco cultured cells. Plant Cell Physiol 36:1281–1289PubMedGoogle Scholar
  24. Kehoe DM, Degenhardt J, Winicov I, Tobin EM (1994) Two 10-bp regions are critical for phytochrome regulation of a Lemna gibba Lhcb gene promoter. Plant Cell 6:1123–1134PubMedCrossRefGoogle Scholar
  25. Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535PubMedCrossRefGoogle Scholar
  26. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66PubMedCrossRefGoogle Scholar
  27. Kusnetsov V, Landsberger M, Meurer J, Oelmuller R (1999) The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 274:36009–36014PubMedCrossRefGoogle Scholar
  28. Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18PubMedCrossRefGoogle Scholar
  29. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376PubMedCrossRefGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  31. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205PubMedCrossRefGoogle Scholar
  32. Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178PubMedCrossRefGoogle Scholar
  33. Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26:1135–1143PubMedCrossRefGoogle Scholar
  34. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27PubMedCrossRefGoogle Scholar
  35. Martinez-Zapater JM, Somerville CR (1990) Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol 92:770–776PubMedCrossRefGoogle Scholar
  36. Martinez-Zapater JM, Coupland G, Dean C, Koornneef M (1994) The transition to flowering in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 403–433Google Scholar
  37. Mazon MJ, Gancedo JM, Gancedo C (1982) Phosphorylation and inactivation of yeast fructose-bisphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. Eur J Biochem 127:605–608PubMedCrossRefGoogle Scholar
  38. Meinke D (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258:1647–1650PubMedCrossRefGoogle Scholar
  39. Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064PubMedCrossRefGoogle Scholar
  40. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedCrossRefGoogle Scholar
  41. Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36:532–540PubMedCrossRefGoogle Scholar
  42. Nakshatri H, Bhat-Nakshatri P, Currie RA (1996) Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem 271:28784–28791PubMedCrossRefGoogle Scholar
  43. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455PubMedCrossRefGoogle Scholar
  44. Nordgard O, Kvaloy JT, Farmen RK, Heikkila R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem 356:182–193PubMedCrossRefGoogle Scholar
  45. Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900PubMedCrossRefGoogle Scholar
  46. Page T, Macknight R, Yang CH, Dean C (1999) Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J 17:231–239PubMedCrossRefGoogle Scholar
  47. Parcy F, Giraudat J (1997) Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J 11:693–702PubMedCrossRefGoogle Scholar
  48. Pinkham JL, Guarente L (1985) Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol 5:3410–3416PubMedGoogle Scholar
  49. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857PubMedCrossRefGoogle Scholar
  50. Redei GP (1962) Supervital mutants of Arabidopsis. Genetics 47:443PubMedGoogle Scholar
  51. Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231:226–232PubMedGoogle Scholar
  52. Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631PubMedCrossRefGoogle Scholar
  53. Romier C, Cocchiarella F, Mantovani R, Moras D (2003) The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem 278:1336–1345PubMedCrossRefGoogle Scholar
  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  55. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616PubMedCrossRefGoogle Scholar
  56. Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458PubMedCrossRefGoogle Scholar
  57. di Silvio A, Imbriano C, Mantovani R (1999) Dissection of the NF-Y transcriptional activation potential. Nucleic Acids Res 27:2578–2584CrossRefGoogle Scholar
  58. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62PubMedCrossRefGoogle Scholar
  59. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289PubMedCrossRefGoogle Scholar
  60. Sinha S, Maity SN, Lu J, de Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA 92:1624–1628PubMedCrossRefGoogle Scholar
  61. Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN (1996) Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol 16:328–337PubMedGoogle Scholar
  62. Stephenson TJ, McIntyre CL, Collet C, Xue GP (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92PubMedCrossRefGoogle Scholar
  63. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771PubMedCrossRefGoogle Scholar
  64. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234PubMedCrossRefGoogle Scholar
  65. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  66. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  67. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006PubMedCrossRefGoogle Scholar
  68. Vicient CM, Bies-Etheve N, Delseny M (2000) Changes in gene expression in the leafy cotyledon1 (lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana L. J Exp Bot 51:995–1003PubMedCrossRefGoogle Scholar
  69. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984PubMedCrossRefGoogle Scholar
  70. West M, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745PubMedCrossRefGoogle Scholar
  71. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Roderick W. Kumimoto
    • 1
    • 2
  • Luc Adam
    • 1
  • Graham J. Hymus
    • 1
  • Peter P. Repetti
    • 1
  • T. Lynne  Reuber
    • 1
  • Colleen M. Marion
    • 1
  • Frederick D. Hempel
    • 1
    • 3
  • Oliver J. Ratcliffe
    • 1
    Email author
  1. 1.Mendel Biotechnology, Inc.HaywardUSA
  2. 2.University of OklahomaNormanUSA
  3. 3.Baia Nicchia LLCSunolUSA

Personalised recommendations