Planta

, Volume 227, Issue 5, pp 929–941

Auxin dynamics: the dazzling complexity of a small molecule’s message

Review

Abstract

The phytohormone auxin is a potent regulator of plant development. Since its discovery in the beginning of the twentieth century many aspects of auxin biology have been extensively studied, ranging from biosynthesis and metabolism to the elucidation of molecular components of downstream signaling. With the identification of the F-box protein TIR1 as an auxin receptor a major breakthrough in understanding auxin signaling has been achieved and recent modeling approaches have shed light on the putative mechanisms underlying the establishment of auxin gradients and maxima essential for many auxin-regulated processes. Here, we review these and other recent advances in unraveling the entanglement of biosynthesis, polar transport and cellular signaling events that allow small auxinic molecules to facilitate their complex regulatory action.

Keywords

Auxin signaling IAA Polar auxin transport TIR1 Natural variation 

References

  1. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29PubMedGoogle Scholar
  2. Badescu G, Napier R (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11:217–223PubMedGoogle Scholar
  3. Bartel B, Fink G (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745–1748PubMedGoogle Scholar
  4. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  5. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedGoogle Scholar
  6. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950PubMedGoogle Scholar
  7. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedGoogle Scholar
  8. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Onckelen HV, Montagu MV, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419PubMedGoogle Scholar
  9. Boutte Y, Ikeda Y, Grebe M (2007) Mechanisms of auxin-dependent cell and tissue polarity. Curr Opin Plant Biol 10:616–623PubMedGoogle Scholar
  10. Bowers AK, Zhao Y (2006) Recent advances in auxin biosynthesis and conjugation. In: Romeo JT (ed) Integrative plant biochemistry, vol. 40. Elsevier, Amsterdam, pp 271–285Google Scholar
  11. Calderon-Villalobos LIA, Kuhnle C, Li H, Rosso M, Weisshaar B, Schwechheimer C (2006) LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. Plant Physiol 141:3–14PubMedGoogle Scholar
  12. Cheng Y, Zhao Y (2007) A role for auxin in flower development. J Integr Plant Biol 49:99–104Google Scholar
  13. Chen J-G, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911PubMedGoogle Scholar
  14. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799PubMedGoogle Scholar
  15. Cheng Y, Dai X, Zhao Y (2007a) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439PubMedGoogle Scholar
  16. Cheng Y, Qin G, Dai X, Zhao Y (2007b) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104:18825–18829PubMedGoogle Scholar
  17. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedGoogle Scholar
  18. Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentbl 47:604–626Google Scholar
  19. Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478PubMedGoogle Scholar
  20. Ciesielski T (1872) Untersuchungen über Abwärtskrümmung der Wurzel. Beitr Biol Pflanz 1:1–17Google Scholar
  21. Darwin CR (1880) The power of movements in plants. Murray, LondonGoogle Scholar
  22. Delarue M, Prinsen E, Va H, Onckelen, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611PubMedGoogle Scholar
  23. de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632PubMedGoogle Scholar
  24. De Smet I, Jürgens G (2007) Patterning the axis in plants—auxin in control. Curr Opin Gen Dev 17:337–343Google Scholar
  25. De Smet I, Tetsumura T, De Rybel B, Frey NFd, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690PubMedGoogle Scholar
  26. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedGoogle Scholar
  27. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor f box proteins. Dev Cell 9:109–119PubMedGoogle Scholar
  28. Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220PubMedGoogle Scholar
  29. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PBF, Ljung K, Sandberg G, Hooykaas PJJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal pin polar targeting directs auxin efflux. Science 306:862–865PubMedGoogle Scholar
  30. Furutani M, Kajiwara T, Kato T, Treml BS, Stockum C, Torres-Ruiz RA, Tasaka M (2007) The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134:3849–3859PubMedGoogle Scholar
  31. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057PubMedGoogle Scholar
  32. Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102PubMedGoogle Scholar
  33. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedGoogle Scholar
  34. Glawischnig E, Tomas A, Eisenreich W, Spiteller P, Bacher A, Gierl A (2000) Auxin biosynthesis in maize kernels. Plant Physiol 123:1109–1119PubMedGoogle Scholar
  35. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691PubMedGoogle Scholar
  36. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276PubMedGoogle Scholar
  37. Gray WM, Hellmann H, Dharmasiri S, Estelle M (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14:2137–2144PubMedGoogle Scholar
  38. Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedGoogle Scholar
  39. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedGoogle Scholar
  40. Guo H-S, Xie Q, Fei J-F, Chua N-H (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386PubMedGoogle Scholar
  41. Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 22:3314–3325PubMedGoogle Scholar
  42. Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Venis MA, Napier RM (1997) Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202:313–323PubMedGoogle Scholar
  43. Hertel R, Thomson K-S, Russo VEA (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340Google Scholar
  44. Hesse T, Feldwisch J, Balshüsemann D, Bauw G, Puype M, Vandekerckhove J, Löbler M, Klämbt D, Schell J, Palme K (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8:2453–2461PubMedGoogle Scholar
  45. Hitchcock AE, Zimmermann PW (1942) Root-inducing activity of phenoxy compounds in relation to their structure. Contrib Boyce Thompson Inst 12:497–507Google Scholar
  46. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109PubMedGoogle Scholar
  47. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miege C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070PubMedGoogle Scholar
  48. Jones AM, Herman EM (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol 101:595–606PubMedGoogle Scholar
  49. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638PubMedGoogle Scholar
  50. Kepinski S (2007) The anatomy of auxin perception. BioEssays 29:953–956PubMedGoogle Scholar
  51. Kepinski S, Leyser O (2002) Ubiquitination and auxin signaling: a degrading story. Plant Cell 14:S81–S95PubMedGoogle Scholar
  52. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedGoogle Scholar
  53. Kerr ID, Bennett MJ (2007) New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J 401:613–622PubMedGoogle Scholar
  54. Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun D-J, Bressan RA (2007a) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol 145:722–735PubMedGoogle Scholar
  55. Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007b) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360PubMedGoogle Scholar
  56. Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2007) Maize nitrilases have a dual role in auxin homeostasis and β-cyanoalanine hydrolysis. J Exp Bot 58:4225–4233PubMedGoogle Scholar
  57. LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452PubMedGoogle Scholar
  58. Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19:1838–1850PubMedGoogle Scholar
  59. Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:424–433Google Scholar
  60. Leyser O, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161–164PubMedGoogle Scholar
  61. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272PubMedGoogle Scholar
  62. Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230Google Scholar
  63. Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008PubMedGoogle Scholar
  64. Merks RMH, Van de Peer Y, Inze D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390PubMedGoogle Scholar
  65. Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedGoogle Scholar
  66. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118PubMedGoogle Scholar
  67. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedGoogle Scholar
  68. Normanly J, Cohen J, Fink G (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90:10355–10359PubMedGoogle Scholar
  69. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684PubMedGoogle Scholar
  70. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130PubMedGoogle Scholar
  71. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463PubMedGoogle Scholar
  72. Östin A, Ilic N, Cohen JD (1999) An in vitro system from maize seedlings for tryptophan-independent indole-3-acetic acid biosynthesis. Plant Physiol 119:173–178PubMedGoogle Scholar
  73. Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300PubMedGoogle Scholar
  74. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof Y-D, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256PubMedGoogle Scholar
  75. Paciorek T, Friml J (2006) Auxin signaling. J Cell Sci 119:1199–1202PubMedGoogle Scholar
  76. Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046PubMedGoogle Scholar
  77. Pollmann S, Müller A, Piotrowski M, Weiler E (2002) Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216:155–161PubMedGoogle Scholar
  78. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453PubMedGoogle Scholar
  79. Quint M, Ito H, Zhang W, Gray WM (2005) Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant J 43:371–383PubMedGoogle Scholar
  80. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752PubMedGoogle Scholar
  81. Romano CP, Robson PRH, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27:1071–1083PubMedGoogle Scholar
  82. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207PubMedGoogle Scholar
  83. Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33:263–275Google Scholar
  84. Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, CambridgeGoogle Scholar
  85. Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911PubMedGoogle Scholar
  86. Scherer GFE, Zahn M, Callis J, Jones AM (2007) A role for phospholipase A in auxin-regulated gene expression. FEBS Lett 581:4205–4211PubMedGoogle Scholar
  87. Schwechheimer C, Deng X-W (2001) COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol 11:420–426PubMedGoogle Scholar
  88. Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng X-W (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292:1379–1382PubMedGoogle Scholar
  89. Seidel C, Walz A., Park S, Cohen JD, Ludwig-Müller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 3:340–345Google Scholar
  90. Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99:1043–1054PubMedGoogle Scholar
  91. Sitbon F, Astot C, Edlund A, Crozier A, Sandberg G (2000) The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211:715–721PubMedGoogle Scholar
  92. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306PubMedGoogle Scholar
  93. Starling EH (1905) The croonian lectures on the chemical correlation of the functions of the body. Lancet 2:339–341Google Scholar
  94. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627PubMedGoogle Scholar
  95. Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415PubMedGoogle Scholar
  96. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedGoogle Scholar
  97. Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065PubMedGoogle Scholar
  98. Tam YY, Normanly J (1998) Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. J Chromatogr A 800:101–108PubMedGoogle Scholar
  99. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedGoogle Scholar
  100. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedGoogle Scholar
  101. Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette p-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939PubMedGoogle Scholar
  102. Thimann KV (1977) Hormone action in the whole life of plants. University of Massachusetts Press, MassachusettsGoogle Scholar
  103. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedGoogle Scholar
  104. Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RAT (2005) The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132:4063–4074PubMedGoogle Scholar
  105. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849PubMedGoogle Scholar
  106. Venis MA (1977) Solubilisation and partial purification of auxin-binding sites of corn membranes. Nature 266:268–269Google Scholar
  107. Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531PubMedGoogle Scholar
  108. Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142:542–552PubMedGoogle Scholar
  109. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790PubMedGoogle Scholar
  110. Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885PubMedGoogle Scholar
  111. Went F (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc K Ned Akad Wet 30:10–19Google Scholar
  112. Went FW, Thimann K (1937) Phytohormones. Macmillan, New YorkGoogle Scholar
  113. Woo E-J, Marshall J, Bauly J, Chen J-G, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of AUXIN-BINDING PROTEIN1 in complex with auxin. EMBO J 21:2877–2885PubMedGoogle Scholar
  114. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedGoogle Scholar
  115. Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254:998–1000PubMedGoogle Scholar
  116. Wu M-F, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218PubMedGoogle Scholar
  117. Yamagami M, Haga K, Napier RM, Iino M (2004) Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol 134:735–747PubMedGoogle Scholar
  118. Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464PubMedGoogle Scholar
  119. Zhao D, Yang M, Solava J, Ma H (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet 25:209–223PubMedGoogle Scholar
  120. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Independent Junior Research GroupLeibniz Institute of Plant BiochemistryHalle/SaaleGermany

Personalised recommendations