Planta

, Volume 227, Issue 4, pp 883–891 | Cite as

High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato

  • David Roux
  • Alain Vian
  • Sébastien Girard
  • Pierre Bonnet
  • Françoise Paladian
  • Eric Davies
  • Gérard Ledoigt
Original Article

Abstract

Using an especially-designed facility, the Mode Stirred Reverberation Chamber, we exposed tomato plants (Lycopersicon esculentum Mill. VFN8) to low level (900 MHz, 5 V m−1) electromagnetic fields for a short period (10 min) and measured changes in abundance of three specific mRNA soon after exposure. Within minutes of electromagnetic stimulation, stress-related mRNA (calmodulin, calcium-dependent protein kinase and proteinase inhibitor) accumulated in a rapid, large and 3-phase manner typical of an environmental stress response. Accumulation of these transcripts into the polysomal RNA also took place (indicating that the encoded proteins were translated) but was delayed (indicating that newly-synthesized mRNA was not immediately recruited into polysomes). Transcript accumulation was maximal at normal Ca2+ levels and was depressed at higher Ca2+, especially for those encoding calcium-binding proteins. Removal of Ca2+ (by addition of chelating agents or Ca2+ channel blocker) led to total suppression of mRNA accumulation. Finally, 30 min after the electromagnetic treatment, ATP concentration and adenylate energy charge were transiently decreased, while transcript accumulation was totally prevented by application of the uncoupling reagent, CCCP. These responses occur very soon after exposure, strongly suggesting that they are the direct consequence of application of radio-frequency fields and their similarities to wound responses strongly suggests that this radiation is perceived by plants as an injurious stimulus.

Keywords

Mode stirred reverberation chamber Radiofrequency electromagnetic field Stress Tomato Wound-like responses 

Abbreviations

AEC

Adenylate energy charge

BAPTA

Bis aminophenoxy ethane tetraacetic acid

EGTA

Ethyleneglycol tetraacetic acid

EMF

Electromagnetic field

MSRC

Mode stirred reverberation chamber

RF

Radio frequency

RTqPCR

Real time quantitative PCR

CCCP

Carbonyl cyanide 3-chlorophenylhydrazone

References

  1. Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP (2003) The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function. Bioelectromagnetics 24:373–379PubMedCrossRefGoogle Scholar
  2. Astumian R (2003) Adiabatic pumping mechanism for ion motive ATPases. Phys Rev Lett 91(118192):1–4Google Scholar
  3. Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034PubMedCrossRefGoogle Scholar
  4. Beaubois É, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A (2007) Intercellular communication in plants: evidence for two rapidly systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ 30:834–844PubMedCrossRefGoogle Scholar
  5. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  6. Boice JD, McLaughlin JR, McLaughlin JK (2002) Epidemiologic studies of cellular telephones and cancer risk. Supplemental Security Income (SSI) Report 6–38Google Scholar
  7. Chico JM, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270PubMedCrossRefGoogle Scholar
  8. Coulon C, Blanchard JM (2001) Flux calciques et expression génique. Med Sci 17:969–978Google Scholar
  9. Davies E, Larkins BA (1980) Ribosomes. In: Stumpf PK, Conn EE (eds) Plant biochemistry: a comprehensive treatise, vol I. Academic, New York, pp 413-435Google Scholar
  10. Davies E, Abe S (1995) Methods for isolation and analysis of polyribosomes. Methods Cell Biol 50:209–222PubMedGoogle Scholar
  11. Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: current hypotheses. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants––neuronal aspects of plant life. Springer, Berlin, pp 309–320Google Scholar
  12. Davies E, Vian A, Henry-Vian C, Stankovic B (1997) Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation. Acta Phys Plant 19:571–576CrossRefGoogle Scholar
  13. Depège N, Thonat C, Coutand C, Julien JL, Boyer N (1997) Morphological responses and molecular modifications in tomato plants after mechanical stimulation. Plant Cell Physiol 38:1127–1134PubMedGoogle Scholar
  14. Dobrota C (2006) Energy dependant plant stress acclimation. Rev Environ Sci Bio/Tech 5:243–251CrossRefGoogle Scholar
  15. Ferguson IB (2004) The plant response: stress in the daily environment. J Zhejiang Univ Sci 5:129–132PubMedCrossRefGoogle Scholar
  16. Feychting M, Ahlbom A, Kheifets L (2005) EMF and health. Annu Rev Public Health 26:65-89CrossRefGoogle Scholar
  17. Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389PubMedCrossRefGoogle Scholar
  18. Galvanovskis J, Sandblom J (1997) Amplication of electromagnetic signals by ion channels. Biophys J 73:3056–3065PubMedGoogle Scholar
  19. Goodman R, Blank M (2002) Insights into electromagnetic interaction mechanisms. J Cell Physiol 192:16–22PubMedCrossRefGoogle Scholar
  20. Henry-Vian C, Vian A, Dietrich A, Ledoigt G, Desbiez MO (1995) Changes in the polysomal mRNA population upon wound signal expression or storage in Bidens pilosa. Plant Physiol Biochem 33:337–344Google Scholar
  21. Henry-Vian C, Vian A, Ledoigt G, Desbiez MO (1996) Effect of wounding on nucleotide pools in Bidens pilosa l. Biol Plant 38:191–196Google Scholar
  22. Herde O, Peña-Cortés H,Wasternack C,Willmitzer L, Fisahn J (1999) Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218PubMedCrossRefGoogle Scholar
  23. Heytler PG (1963) Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry 2:357–361PubMedCrossRefGoogle Scholar
  24. Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664PubMedCrossRefGoogle Scholar
  25. Julien JL, Desbiez MO, De Jaegher G, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa. J Exp Bot 42:131–137CrossRefGoogle Scholar
  26. Keppler D, Rudigier J, Decker K (1970) Enzymic determination of uracil nucleotides in tissues. Anal Biochem 38:105–114PubMedCrossRefGoogle Scholar
  27. Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078PubMedCrossRefGoogle Scholar
  28. LeBrasseur ND, MacIntosh GC, Pérez-Amador MA, Saitoh M, Green PM (2002) Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29:393–403PubMedCrossRefGoogle Scholar
  29. Leitner-Dagan Y, Weiss D (1999) Ca2+, calmodulin and protein dephosphorylation are required for GA-induced gene expression in Petunia corolla. Physiol Plant 105:116–121CrossRefGoogle Scholar
  30. Lew R, Spanswick RM (1984) Characterization of the electrogenicity of soybean (Glycine max L.) roots ATP dependence and effect of ATPase inhibitors. Plant Physiol 75:1–6PubMedCrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  32. Moal J, Le Coz JR, Samain JF, Daniel JY, Bodoy A (1991) Oyster adenylate energy charge: response to levels of food. Aquat Living Resour 4:133–138CrossRefGoogle Scholar
  33. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898PubMedCrossRefGoogle Scholar
  34. Pradet A (1967) Etude des adenosines-5′mono, di-et tri-phosphates dans les tissus végétaux. I-dosage enzymatique. Physiol Vég 5:209–221Google Scholar
  35. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol Plant 128:283–288CrossRefGoogle Scholar
  36. Selga T, Selga M (1996) Response of Pinus sylvestris L. needles to electromagnetic fields. Sci Total Environ 180:65–73CrossRefGoogle Scholar
  37. Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406CrossRefGoogle Scholar
  38. Stankovic B, Vian A, Henry-Vian C, Davies E (2000) Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein. Planta 212:60–66PubMedCrossRefGoogle Scholar
  39. Tafforeau M, Verdus MC, Norris V, White GJ, Demarty M, Thellier M, Ripoll C (2002) SIMS study of the calcium-deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J Trace Microprobe Techn 20:611-623CrossRefGoogle Scholar
  40. Tafforeau M, Verdus MC, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C. (2004) Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407PubMedCrossRefGoogle Scholar
  41. Trewavas AJ (2000) Signal perception and transduction. In: Buchanan R, Jones R, Gruissem W (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Texas, pp 930–987Google Scholar
  42. Valberg PA, van Deventer TE, Repacholi MH (2007) Base stations and wireless networks: Radiofrequency (RF) exposures and health consequences. Environ Health Perspect 115:416–424PubMedCrossRefGoogle Scholar
  43. Vian A, Davies E (2006) Two different wound signals evoke very rapid, systemic CMBP transcript accumulation in tomato. Plant Sign Behav 1:261–264Google Scholar
  44. Vian A, Henry-Vian C, Schantz R, Ledoigt G, Frachisse JM, Desbiez MO, Julien JL (1996) Is membrane potential involved in calmodulin gene expression after external stimulation in plants ? FEBS Lett 380:93–96PubMedCrossRefGoogle Scholar
  45. Vian A, Henry-Vian C, Schantz R, Schantz ML, Davies E, Ledoigt G, Desbiez MO (1997) Effect of calcium and calcium-counteracting drugs on the response of Bidens pilosa L. to wounding. Plant Cell Physiol 38:751–753Google Scholar
  46. Vian A, Henry-Vian C, Davies E (1999) Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato. Plant Physiol 121:517–524PubMedCrossRefGoogle Scholar
  47. Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Sign Behav 1:67–70Google Scholar
  48. Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Roux
    • 1
  • Alain Vian
    • 1
  • Sébastien Girard
    • 2
  • Pierre Bonnet
    • 2
  • Françoise Paladian
    • 2
  • Eric Davies
    • 3
  • Gérard Ledoigt
    • 1
  1. 1.EA 3296 ERTACUniversité Blaise PascalAubiere CedexFrance
  2. 2.UMR CNRS 6602 LASMEAUniversité Blaise PascalAubiere CedexFrance
  3. 3.Department of Plant BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations