, Volume 227, Issue 1, pp 125–132 | Cite as

Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites

  • Kaori Yoneyama
  • Xiaonan Xie
  • Dai Kusumoto
  • Hitoshi Sekimoto
  • Yukihiro Sugimoto
  • Yasutomo Takeuchi
  • Koichi YoneyamaEmail author
Original Article


Strigolactones released from plant roots induce hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi and germination of root parasitic weeds, Striga and Orobanche spp. We already demonstrated that, in red clover plants (Trifolium pratense L.), a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Ca, Mg) in the culture medium significantly promoted the secretion of a strigolactone, orobanchol, by the roots of this plant. Here we show that in the case of sorghum [Sorghum bicolor (L.) Moench], a host of both the root hemiparasitic plant Striga hermonthica and AM fungi, N deficiency as well as P deficiency markedly enhanced the secretion of a strigolactone, 5-deoxystrigol. The 5-deoxystrigol content in sorghum root tissues also increased under both N deficiency and P deficiency, comparable to the increase in the root exudates. These results suggest that strigolactones may be rapidly released after their production in the roots. Unlike the situation in the roots, neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.


Arbuscular mycorrhizal fungi 5-Deoxystrigol Nitrogen deficiency Phosphorus deficiency Sorghum Striga 



Arbuscular mycorrhizal


4-Morpholineethanesulfonic acid


High performance liquid chromatography/tandem mass spectrometry



We acknowledge Dr. Kohki Akiyama (Osaka Prefecture University) for generous gift of synthetic (±)-5-deoxystrigol. We thank Dr. D. M. Joel (Agricultural Research Organization, Ramat Yishay, Israel) for critical reading of the manuscript. A part of this study was supported by the Sasakawa Scientific Research Grant from The Japan Science Society, a Grant-in Aid for Scientific Research (1820810) from Japan Society for the Promotion of Science (JSPS), and a grant for Eminent Research at Utsunomiya University (2006).


  1. Abu Irmaileh BE (1994) Nitrogen reduces branched broomrape (Orobanche ramosa) seed germination. Weed Sci 42:57–60Google Scholar
  2. Akiyama, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedCrossRefGoogle Scholar
  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  4. Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221–227Google Scholar
  5. Buee M, Rossignol M, Jauneau A, Ranjeva R, Beard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698PubMedCrossRefGoogle Scholar
  6. Cechin I, Press MC (1993) Nitrogen relations of the sorghum-Striga hermonthica host–parasite association: germination, attachment and early growth. New Phytol 124:681–687CrossRefGoogle Scholar
  7. Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266PubMedCrossRefGoogle Scholar
  8. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190PubMedCrossRefGoogle Scholar
  9. Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol––a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–9199CrossRefGoogle Scholar
  10. Epstein E, Bloom JA (2004) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, SunderlandGoogle Scholar
  11. Giovannetti M, Sbrana C, Avio L, Citernesi S A, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–593CrossRefGoogle Scholar
  12. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  13. Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite–host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13:277–281PubMedCrossRefGoogle Scholar
  14. Harrison JM (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  15. Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478Google Scholar
  16. He HX, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567CrossRefGoogle Scholar
  17. Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411PubMedCrossRefGoogle Scholar
  18. Jain R, Foy CL (1992) Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technol 6:269–275Google Scholar
  19. Joel DM (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot 19:753–758CrossRefGoogle Scholar
  20. Joel DM, Steffens JC, Matthews DE (1995) Germination of weedy root parasites. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 567–597Google Scholar
  21. Joel DM, Hershenhorm J, Eizenberg H, Aly R, Ejeta G, Rich P J, Ransom J K, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. In: Janick J (ed) Horticultural reviews, vol 33. Willey, New York, pp 267–350CrossRefGoogle Scholar
  22. Lendzemo VW, Kuyper TW, Kropff MJ, Ast AV (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61CrossRefGoogle Scholar
  23. Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic, California Google Scholar
  24. Müller S, Hauck C, Schildknecht H (1992) Germination stimulants produced by Vigna unguiculata Walp cv. Saunders upright. J Plant Growth Regul 11:77–84CrossRefGoogle Scholar
  25. Mumera LM, Below FE (1993) Role of nitrogen in resistance to Striga parasitism of maize. Crop Sci 33:758–763CrossRefGoogle Scholar
  26. Muurinen S, Slafer GA, Peltonen-Sainio P (2006) Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Sci 46:561–568CrossRefGoogle Scholar
  27. Nagahashi G, Douds DD (2000) Partial separation of root exudates components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464CrossRefGoogle Scholar
  28. Parker C, Riches R C (1993) Parasitic weeds of the world: biology and control. CAB International, WallingfordGoogle Scholar
  29. Raghothama GK (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693PubMedCrossRefGoogle Scholar
  30. Raju PS, Osman MA, Soman P, Peacock JM (1990) Effects of N, P and K on Striga asiatica (L.) Kuntze seed germination and infestation of sorghum. Weed Res 30:139–144CrossRefGoogle Scholar
  31. Sato D, Awad AA, Chae SH, Yokota T, Sugimoto Y, Takeuchi Y, Yoneyama K (2003) Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 51:1162–1168PubMedCrossRefGoogle Scholar
  32. Sato D, Awad AA, Takeuchi Y, Yoneyama K (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102PubMedCrossRefGoogle Scholar
  33. Siame BP, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491CrossRefGoogle Scholar
  34. Tadano T, Tanaka A (1980) The effect of low phosphate concentrations in culture medium on early growth of several crop plants (in Japanese, translated by the authors). Jpn J Soil Sci Plant Nutr 51:399–404Google Scholar
  35. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  36. Wang X, Yost RS, Linquist BA (2001) Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J 65:139–146CrossRefGoogle Scholar
  37. Xu QF, Tsai CL, Tsai CY (1992) Interaction of potassium with the form and amount of nitrogen nutrition on growth and nitrogen uptake of maize. J Plant Nutr 15:23–33CrossRefGoogle Scholar
  38. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973CrossRefGoogle Scholar
  39. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kaori Yoneyama
    • 1
  • Xiaonan Xie
    • 1
  • Dai Kusumoto
    • 1
  • Hitoshi Sekimoto
    • 2
  • Yukihiro Sugimoto
    • 3
  • Yasutomo Takeuchi
    • 1
  • Koichi Yoneyama
    • 1
    Email author
  1. 1.Weed Science CenterUtsunomiya UniversityUtsunomiyaJapan
  2. 2.Department of Bioproductive Sciences, Faculty of AgricultureUtsunomiya UniversityUtsunomiyaJapan
  3. 3.Faculty of AgricultureKobe UniversityKobeJapan

Personalised recommendations