Planta

, Volume 226, Issue 5, pp 1231–1241 | Cite as

Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec

  • Mandy Birschwilks
  • Norbert Sauer
  • Dierk Scheel
  • Stefanie Neumann
Original Article

Abstract

Arabidopsis thaliana and Cuscuta spec. represent a compatible host–parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host–parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP–ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP–ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP–ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A.thaliana covering the entire range of its genetic diversity, as well as Arabidopsishalleri, were found to be susceptible towards Cuscutareflexa.

Keywords

Arabidopsis Carboxyfluorescein Cuscuta Green fluorescent protein (GFP) GFP–ubiquitin Symplastic 

Abbreviations

CF

5,6-Carboxyfluorescein

CLSM

Confocal laser scanning microscopy

14C-DCMU

Diuron-methyl 14C

GFP

Green fluorescent protein

SEL

Size exclusion limit

References

  1. Atkins D, Hull R, Wells B, Roberts K, Moore P, Beachy RN (1991) The tobacco mosaic virus 30 k movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211PubMedGoogle Scholar
  2. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076PubMedCrossRefGoogle Scholar
  3. Birschwilks M, Haupt S, Hofius D, Neumann S (2006) Transfer of phloem mobile substances from the host plants to the holoparasite Cuscuta spec. J Exp Bot 57:911–921PubMedCrossRefGoogle Scholar
  4. Bennett CW (1944) Studies of dodder transmission of plant viruses. Phytopathology 34:905–932Google Scholar
  5. Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317Google Scholar
  6. Dörr I (1968) Zur Lokalisation von Zellkontakten zwischen Cuscuta odorata und verschiedenen höheren Wirtspflanzen. Protoplasma 65:435–448CrossRefGoogle Scholar
  7. Dörr I (1969) Feinstruktur intrazellulär wachsender Cuscuta-Hyphen. Protoplasma 67:123–137CrossRefGoogle Scholar
  8. Dörr I (1990) Sieve elements in haustoria of parasitic angiosperms. In: Behnke HD, Sjolund RD (eds) Sieve elements—comparative structure, induction and development. Springer, Heidelberg, pp 239–256Google Scholar
  9. Dörr I, Kollmann R (1994) Symplasmic sieve element continuity between Orobanche and its host. Bot Acta 108:47–55Google Scholar
  10. Fer A, de Bock F, Renaudin S, Rey L, Thalouarn P (1987) Relation trophiques entre angiospermes parasites et leurs hotes respectifs. II Voies de transport et mecanismes impliques dans le transfert des substances trophiques a l’interface hote-parasite. Bull Soc Bot Fr Actual Bot 134:109–120Google Scholar
  11. Furuhashi K, Tada Y, Okamoto K, Sugai M, Kubota M, Watanabe M (1997) Phytochrome participation in induction of haustoria in Cuscuta japonica, a holoparasite flowering plant. Plant Cell Physiol 38:935–940Google Scholar
  12. Glazebrook J, Ausubel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91:8955–8959PubMedCrossRefGoogle Scholar
  13. Golecki B, Schulz A, Carsten-Behrens U, Kollmann R (1998) Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206:630–640CrossRefGoogle Scholar
  14. Haidar MA, Orr GL, Westra P (1997) Effects of light and mechanical stimulation on coiling and prehaustoria formation in Cuscuta spp. Weed Res 37:219–228CrossRefGoogle Scholar
  15. Haupt S, Neumann S (1996) Transfer of assimilates and xenobiotics from host plants to the parasite Cuscuta reflexa. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Cordoba, pp 355–364Google Scholar
  16. Haupt S, Oparka KJ, Sauer N, Neumann S (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J Exp Bot 52:173–177PubMedCrossRefGoogle Scholar
  17. Heide-Jorgensen HS (1991) Notes on structure of the adhesive disk of Cuscuta. In: Ransom JK, Musselman LJ, Worsham AD, Parker C (eds) Proc 5th Int symposium of parasitic weeds. Nairobi, Kenia, p 513Google Scholar
  18. Heintz W (1989) Transmission of a new mycoplasma-like organism (MLO) from Cuscuta odorata (Ruiz & Pav.) to herbaceous plants and attempts to its elimination in the vector. J Phytopath 125:171–186Google Scholar
  19. Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 29:211–220CrossRefGoogle Scholar
  20. Hosford RM Jr (1967) Transmission of plant viruses by dodder. Bot Rev 33:387–406CrossRefGoogle Scholar
  21. Ihl B, Wiese K (2000) Studien an Cuscuta reflexa Roxb. VIII. Mechanische Haustorieninduktion an nichtwindenden Achsen des Parasiten. Flora 195:1–8Google Scholar
  22. Imlau A, Truenit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissue. Plant Cell 11:309–322PubMedCrossRefGoogle Scholar
  23. Jacob F, Neumann D, Neumann S (1985) Studies on Cuscuta reflexa Roxb. VI. Is there an autoparasitic withdrawal of nutrients. J Plant Physiol 123:151–160Google Scholar
  24. Jacob F, Neumann S (1968) Studien an Cuscuta reflexa Roxb. I. Zur Funktion der Haustorien bei der Aufnahme von Saccharose. Flora Abt A 159:191–203Google Scholar
  25. Jeschke WD, Räth N, Bäumel P, Czygan F-C, Proksch P (1994) Modelling the flow and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L. I. Methods for estimating net flows. J Exp Bot 45:791–800CrossRefGoogle Scholar
  26. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  27. Kaminska M, Korbin M (1999) Graft and dodder transmission of phytoplasma affecting lily to experimental hosts. Acta Physiol Plant 21:21–27CrossRefGoogle Scholar
  28. King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103PubMedCrossRefGoogle Scholar
  29. Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells belonging to different unrelated taxa. Protoplasma 124:224–235CrossRefGoogle Scholar
  30. Kollmann R, Yang S, Glockmann C (1985) Studies on graft unions. II. Continuous and half plasmodesmata in different region of the graft interface. Protoplasma 127:19–29CrossRefGoogle Scholar
  31. Kollmann R, Glockmann C (1991) Studies on graft unions. III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85CrossRefGoogle Scholar
  32. Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161–164PubMedCrossRefGoogle Scholar
  33. Löffler C, Czygan FC, Proksch P (1999) Role of indole-3-acetic-acid in the interaction of the phanerogamic parasite Cuscuta and host plants. Plant Biol 1:613–617Google Scholar
  34. McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202PubMedCrossRefGoogle Scholar
  35. Nagar R, Singh M, Sanwal GG (1984) Cell wall degrading enzymes in Cuscuta reflexa and its host. J Exp Bot 35:1104–1112CrossRefGoogle Scholar
  36. Oparka KJ, Boevink P, Santa Cruz S (1996a) Studying the movement of plant viruses using green fluorescent protein. Trends Plant Sci 1:412–418CrossRefGoogle Scholar
  37. Oparka KJ, Roberts AG, Roberts IM, Prior DAM, Santa Cruz S (1996b) Viral coat protein is targeted to, but does not gate, plasmodesmata during cell-to-cell movement of potato virus X. Plant J 10:805–813CrossRefGoogle Scholar
  38. Padgett HS, Epel BL, Kahn TW, Heinlein M, Watanabe Y, Beachy RN (1996) Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 10:1079–1088PubMedCrossRefGoogle Scholar
  39. Paliyath G, Maheswari R, Mahadevan S (1978) Initiation of haustoria in Cuscuta by cytokinin application. Curr Sci 47:427–429Google Scholar
  40. Pant DD, Banerji R (1965) Epidermal structure and development of stomata in some Convolvulaceae. Senckenb Biol 46:155–173Google Scholar
  41. Parker E, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046PubMedCrossRefGoogle Scholar
  42. Rajagopal I, Ramasubramanian TS, Paliyath G, Mahadevan S (1988) Hormones and Cuscuta development: interaction of cytokinin and indole-3-acetic-acid in the growth and curvature of subapical stem segments. J Plant Growth Regul 7:121–132CrossRefGoogle Scholar
  43. Roberts AG, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana, comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396PubMedCrossRefGoogle Scholar
  44. Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967PubMedCrossRefGoogle Scholar
  45. Schaffner G (1979) Extraflorale Nektarien bei Cuscuta. Ber Dtsch Bot Ges 92:721–729Google Scholar
  46. Schmucker T (1959) Höhere Parasiten. In: W Ruhland (Hsgb) Handbuch der Pflanzenphysiologie, Bd 11: Heterotrophie. Springer, Berlin, Göttingen, Heidelberg, pp 480–529Google Scholar
  47. Schumacher W, Halbsguth W (1938) Über den Anschluss einiger höherer Parasiten an die Siebröhren der Wirtspflanzen. Ein Beitrag zum Plasmodesmenproblem. Jahrb Wiss Bot 87:324–355Google Scholar
  48. Srivastava S, Nighojkar A, Kumar A (1994) Multiple forms of pectin methylesterase from Cuscuta reflexa filaments. Phytochemistry 37:1233–1236CrossRefGoogle Scholar
  49. Stadler R, Wright KM, Lauterbach Ch, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005a) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331PubMedCrossRefGoogle Scholar
  50. Stadler R, Lauterbach Ch, Sauer N (2005b) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712PubMedCrossRefGoogle Scholar
  51. Tada Y, Sugai M, Furuhashi K (1996) Haustoria of Cuscuta japonica, a holoparasite flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol 37:1049–1053Google Scholar
  52. Terry BR, Matthews EK, Haseloff J (1995) Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem Biophys Res Commun 217:21–27PubMedCrossRefGoogle Scholar
  53. Vaughn KC (2002) Attachment of the parasitic weed dodder to the host. Protoplasma 219:227–237PubMedCrossRefGoogle Scholar
  54. Vaughn KC (2003) Dodder hyphae invade the host, a structural and immunocytochemical characterization. Protoplasma 220:189–200PubMedCrossRefGoogle Scholar
  55. Vaughn KC (2006) Conversion of the searching hyphae of dodder into xylic and phloic hyphae: a cytochemical and immunocytochemical investigation. Int J Plant Sci 167:1099–1114CrossRefGoogle Scholar
  56. Vieira Dos Santos C, Delavault P, Letousey P, Thalouarn P (2003) Identification by suppression subtractive hybridization and expression analysis of Arabidopsis thaliana putative defence genes during Orobanche ramosa infestation. Physiol Mol Plant Pathol 62:297–303CrossRefGoogle Scholar
  57. Westwood JH (2000) Characterization of the Orobanche-Arabidopsis system for studying parasite–host interactions. Weed Sci 48:742–748CrossRefGoogle Scholar
  58. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565PubMedCrossRefGoogle Scholar
  59. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mandy Birschwilks
    • 1
  • Norbert Sauer
    • 2
  • Dierk Scheel
    • 1
  • Stefanie Neumann
    • 3
  1. 1.Leibniz-Institut für Pflanzenbiochemie (IPB)Halle/SaaleGermany
  2. 2.Molekulare Pflanzen-physiologie Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Naturwissenschaftliche Fakultät I, Institut für Biologie, Institutsbereich Pflanzenphysiologie Martin-Luther-Universität, Halle-WittenbergHalle/SaaleGermany

Personalised recommendations