Advertisement

Planta

, Volume 226, Issue 4, pp 853–866 | Cite as

Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds

  • Véronique Bergougnoux
  • Jean-Claude Caissard
  • Frédéric Jullien
  • Jean-Louis Magnard
  • Gabriel Scalliet
  • J. Mark Cock
  • Philippe Hugueney
  • Sylvie Baudino
Original Article

Abstract

The localization and timing of production and emission of scent was studied in different Rosa × hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. × hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.

Keywords

Floral scent Petal epidermis Rosa Terpenes Volatiles 

Abbreviations

DMT

3,5-Dimethoxytoluene

OOMT

Orcinol O-methyltransferase

TEM

Transmission electron microscopy

Notes

Acknowledgments

We thank Isabelle Anselme-Bertrand (Centre de Microscopie Electronique Stéphanois) for her help on the ESEM. We are indebted to Martine Hossaert-McKey (Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, Montpellier) and Marie-Charlotte Anstett (Institut des Sciences de l’Evolution, Université Montpellier 2) for the help with the headspace apparatus. We also thank Frédéric Pautz (Jardin Botanique de la Ville de Lyon), Charles Broizat (Hortirose), Pierre Orard and Meilland Richardier who allowed us to cut roses in their collection. We also would like to thank Florence Gros and David Roujol for technical assistance. This work was supported by the Région Rhône-Alpes, France.

References

  1. Adams S, Kunz B, Weidenbörner M (1996) Mycelial deformations of Cladosporium herbarum due to the application of eugenol and carvacrol. J Essent Oil Res 8:535–540Google Scholar
  2. Altenburger R, Matile P (1990) Further observations on rhythmic emission of fragrance in flowers. Planta 180:194–197CrossRefGoogle Scholar
  3. Barletta A (1995) Scent makes a comeback. Flora Cult 5:23–25Google Scholar
  4. Bergström G, Dobson HEM, Groth I (1995) Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242CrossRefGoogle Scholar
  5. Caissard JC, Joly C, Bergougnoux V, Hugueney P, Mauriat M, Baudino S (2004) Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants. Recent Res Dev Cell Biol 2:1–15Google Scholar
  6. Caissard JC, Bergougnoux V, Martin M, Mauriat M, Baudino S (2006) Chemical and histochemical analysis of ‘Quatre Saisons Blanc Mousseux’, a moss rose of the Rosa × damascena group. Ann Bot 97:231–238PubMedCrossRefGoogle Scholar
  7. Channelière S, Rivière S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38PubMedCrossRefGoogle Scholar
  8. Clery RA, Owen NE, Chambers SF, Thornton-Wood SP (1999) An investigation into the scent of carnations. J Essent Oil Res 11:355–359Google Scholar
  9. Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647CrossRefGoogle Scholar
  10. Crawford BCW, Nath U, Carpenter R, Coen ES (2004) Cincinnata controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135:244–253PubMedCrossRefGoogle Scholar
  11. David R, Carde JP (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. C R Acad Sci Paris 258:1338–1340Google Scholar
  12. Dobson HEM, Bergström G, Groth I (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae). Israel J Bot 39:143–156Google Scholar
  13. Dobson HEM, Danielson EM, Van Wesep ID (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol 14:153–166CrossRefGoogle Scholar
  14. Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633PubMedCrossRefGoogle Scholar
  15. Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: nove1 patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148PubMedCrossRefGoogle Scholar
  16. Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961PubMedCrossRefGoogle Scholar
  17. Effmert U, Große J, Röse USR, Ehrig F, Kägi R, Piechulla B (2005) Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot 92:2–12Google Scholar
  18. Evans RY, Reid MS (1988) Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J Am Soc Hort Sci 113:884–888Google Scholar
  19. Flamini G, Cioni PL, Morelli I (2003) Differences in the fragrances of pollen, leaves, and floral parts of garland (Chrysanthemum coronarium) and composition of the essential oils from flowerheads and leaves. J Agric Food Chem 51:2267–2271PubMedCrossRefGoogle Scholar
  20. Glover BJ, Martin C (2002) Evolution of adaptive petal cell morphology. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor and Francis, London, pp 160–172Google Scholar
  21. Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443PubMedCrossRefGoogle Scholar
  22. Gorton HL, Vogelmann TC (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112:879–888PubMedGoogle Scholar
  23. Grison-Pigé L, Bessière JM, Turlings TCJ, Kjellberg F, Roy, Hossaert-McKey M (2001) Limited intersex mimicry of floral odour in Ficus carica. Funct Ecol 15:551–558CrossRefGoogle Scholar
  24. Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:159–189Google Scholar
  25. Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338PubMedCrossRefGoogle Scholar
  26. Heath RR, Manukian A (1994) An automated system for use in collecting volatile chemicals released from plants. J Chem Ecol 20:593–608CrossRefGoogle Scholar
  27. Hudak KA, Thompson JE (1997) Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals. Plant Physiol 114:705–713PubMedGoogle Scholar
  28. Jetter R (2006) Examination of the processes involved in the emission of scent volatiles from flowers. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Informa Healthcare, London, pp 125–144Google Scholar
  29. Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84Google Scholar
  30. Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol 126:956–964PubMedCrossRefGoogle Scholar
  31. Kovats E (1987) Composition of essential oils Part 7. Bulgarian oil of rose (Rosa damascena Mill.). J Chromatogr 406:185–222CrossRefGoogle Scholar
  32. Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907PubMedCrossRefGoogle Scholar
  33. Loomis WD, Croteau R (1973) Biochemistry and physiology of lower terpenoids. Recent Adv Phytochem 6:147–185Google Scholar
  34. Loughrin JH, Hamilton-Kemp T, Burton HR, Anderson RA, Hildebrand DF (1992) Glycosidically bound volatile components of Nicotiana sylvestris and N. suaveolens flowers. Phytochemistry 31:1537–1540CrossRefGoogle Scholar
  35. MacTavish HS, Menary RC (1997) Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma (Nees). Ann Bot 80:305–311CrossRefGoogle Scholar
  36. Martin JH, Lynn JA, Nichey WM (1966) A rapid polychrome stain for epoxy-embedded tissue. Am J Clin Pathol 46:250–251PubMedGoogle Scholar
  37. Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M (2002) The mechanics of cell fate determination in petals. Phil Trans Roy Soc Lond B 357:809–813CrossRefGoogle Scholar
  38. Nakamura S (1987) Scent and component analysis of the hybrid tea rose. Perfum Flavor 12:43–45Google Scholar
  39. Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, Wagner C, Clark DG, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2292–3006CrossRefGoogle Scholar
  40. Noda K, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661–664PubMedCrossRefGoogle Scholar
  41. Ohloff G (1978) Importance of minor components in flavors and fragrance. Perfum Flavor 3:11–22Google Scholar
  42. Oyama-Okubo N, Ando T, Watanabe N, Marchesi E, Uchida K, Nakayama M (2005) Emission mechanism of floral scent in Petunia axillaris. Biosci Biotechnol Biochem 69:773–7PubMedCrossRefGoogle Scholar
  43. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243PubMedCrossRefGoogle Scholar
  44. Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106:1533–1540PubMedGoogle Scholar
  45. Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478PubMedCrossRefGoogle Scholar
  46. Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant species Biol 14:95–120CrossRefGoogle Scholar
  47. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032PubMedCrossRefGoogle Scholar
  48. Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, Channelière S, Vergne P, Dumas C, Bendahmane M, Cock JM, Hugueney P (2002) Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett 523:113–118PubMedCrossRefGoogle Scholar
  49. Scalliet G, Lionnet C, Le Bechec M, Dutronc L, Magnard J-L, Baudino S, Bergougnoux V, Jullien F, Chambrier P, Vergne P, Dumas C, Cock JM, Hugueney P (2006) Role of petal specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiol 140:18–29PubMedCrossRefGoogle Scholar
  50. Shalit M, Shafir S, Larkov O, Bar E, Kaslassi D, Adam Z, Zamir D, Vainstein A, Weiss D, Ravid U, Lewinsohn E (2004) Volatile compounds emitted by rose cultivars: fragrance perception by man and honeybees. Israel J Plant Sci 52:245–255CrossRefGoogle Scholar
  51. Sood S, Vyas D, Nagar PK (2006) Physiological and biochemical studies during flower development in two rose species. Scientia Horticulturae 108:390–396CrossRefGoogle Scholar
  52. Stead AD, van Doorn WG, Jones ML, Wagstaff C (2006) Flower senescence: fundamental and applied aspects. In: Ainsworth C (ed) Flowering and its manipulation. Annu Plant Rev, Blackwell, Oxford, vol 20, pp 261–296Google Scholar
  53. Stubbs JM, Francis MJO (1971) Electron microscopical studies of rose petal cells during flower maturation. Planta Med 20:211–218PubMedCrossRefGoogle Scholar
  54. Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139:341–352PubMedCrossRefGoogle Scholar
  55. Suire C, Bouvier F, Backhaus RA, Bégu D, Bonneu M, Camara B (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978PubMedCrossRefGoogle Scholar
  56. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679PubMedCrossRefGoogle Scholar
  57. Vogel S (1962) Duftdrüsen im Dienste der Bestäubung. Über Bau und Funktion der Osmophoren. Akademie der Wissenschaften und der Literatur. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 10:598–763Google Scholar
  58. Weston EL, Pyke KA (1999) Developmental ultrastructure of cells and plastids in the petals of wallflower (Erysimum cheiri). Ann Bot 84:763–769CrossRefGoogle Scholar
  59. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307PubMedCrossRefGoogle Scholar
  60. Yeboah Gyan K, Woodell SRJ (1987) Flowering phenology, flower colour and mode of reproduction of Prunus spinosa L. (Blackthorn); Crataegus monogyna Jacq. (Hawthorn); Rosa canina L. (dog rose); and Rubus fruticosus L. (Bramble) in Oxfordshire, England. Funct Ecol 1:261–268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Véronique Bergougnoux
    • 1
  • Jean-Claude Caissard
    • 1
  • Frédéric Jullien
    • 1
  • Jean-Louis Magnard
    • 1
  • Gabriel Scalliet
    • 2
  • J. Mark Cock
    • 3
  • Philippe Hugueney
    • 2
  • Sylvie Baudino
    • 1
  1. 1.Laboratoire de Biotechnologies Végétales, Plantes Aromatiques et Médicinales, EA 3061Université Jean MonnetSaint-Etienne Cedex 2France
  2. 2.Laboratoire Reproduction et Développement des PlantesUMR 5667 CNRS-INRA-ENSL-UCBL, IFR128 Bioscience Lyon-Gerland, Ecole Normale Supérieure de LyonLyon Cedex 07France
  3. 3.UMR 7139 CNRS-Goëmar-UPMC, Végétaux Marins et Biomolécules, Station BiologiqueRoscoff CedexFrance

Personalised recommendations