, Volume 225, Issue 6, pp 1339–1351 | Cite as

AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development

  • Adriana Flores Fusaro
  • Silvia Nora Bocca
  • Rose Lucia Braz Ramos
  • Rosa Maria Barrôco
  • Claudia Magioli
  • Vanessa Cardeal Jorge
  • Tatiana Cardoso Coutinho
  • Camila Martins Rangel-Lima
  • Riet De Rycke
  • Dirk Inzé
  • Gilbert Engler
  • Gilberto Sachetto-Martins
Original Article


The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.


Arabidopsis Cold-shock protein Development Flowering time Glycine-rich protein; RNA-binding protein 



Cold-shock domain


Cold-shock protein


Knuckle zinc finger


Glycine-rich protein




Maltose-binding protein


RNA recognition motif



The authors would like to thank D. E. de Oliveira (Institute of Plant Biotechnology for Developing Countries, Gent, Belgium) for critical reading of the manuscript. A.F.F. was supported by a Ph.D. fellowship from CAPES. S.N.B. and C.M. were supported by CNPq post-doctoral and CAPES-ProDoc fellowships, respectively. V.C.J., T.C.C. and C.M.R.L. were recipient of PIBIC fellowship from CNPq. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to G.S.M. and by Interuniversity Poles of Attraction Programme-Belgian Science Policy (P5/13) to D.I.


  1. Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G (2005) Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Gen Mol Biol 23:608–624Google Scholar
  2. Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3:749–758PubMedCrossRefGoogle Scholar
  3. Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 269:23074–23078Google Scholar
  4. Carpenter CD, Kreps JA, Simon AE (1994) Genes enconding gycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 104:1015–1025PubMedCrossRefGoogle Scholar
  5. Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66PubMedCrossRefGoogle Scholar
  6. Clarke MC, Wei W, Lindsey K (1992) High-frequency transformation of Arabidopsis thaliana by Agrobacterium tumefaciens. Plant Mol Biol Rep 10:178–189Google Scholar
  7. de Almeida Engler J, De Groodt R, Van Montagu M, Engler G (2001) In situ hybridization to mRNA of Arabidopsis tissue sections. Methods 23:325–334PubMedCrossRefGoogle Scholar
  8. de Oliveira DE, Seurinck J, Inzé D, Van Montagu M, Botterman J (1990) Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427–436PubMedCrossRefGoogle Scholar
  9. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205PubMedCrossRefGoogle Scholar
  10. Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N (2001) The major mRNA-associated protein YB-1 is a potent 5’ cap-dependent mRNA stabilizer. EMBO J 20:5491–5502PubMedCrossRefGoogle Scholar
  11. Fusaro A, Mangeon A, Rocha C, Junqueira R, Coutinho T, Margis R, Sachetto-Martins G (2001) Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) encoding glycine-rich proteins (GRPs). Gen Mol Biol 24:263–273Google Scholar
  12. Gendra E, Moreno A, Albà MM, Pagès M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886PubMedCrossRefGoogle Scholar
  13. Graumann P, Marahiel M (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290PubMedCrossRefGoogle Scholar
  14. Hanano S, Sugita M, Sugiura M (1996) Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol Biol 31:57–68PubMedCrossRefGoogle Scholar
  15. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127PubMedCrossRefGoogle Scholar
  16. Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813PubMedCrossRefGoogle Scholar
  17. Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:8515–8520PubMedCrossRefGoogle Scholar
  18. Hirose T, Sugita M, Sugiura M (1993) cDNA structure, expression and nucleic-acid binding properties of three RNA-binding proteins in tobacco: ocurrence of tissue alternative splicing. Nucleic Acids Res 21:3981–3987PubMedCrossRefGoogle Scholar
  19. Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from B. napus. Plant Mol Biol 30:679–684PubMedCrossRefGoogle Scholar
  20. Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15PubMedCrossRefGoogle Scholar
  21. Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold-shock proteins. J Biol Chem 20:35248–35256CrossRefGoogle Scholar
  22. Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900PubMedCrossRefGoogle Scholar
  23. Kingsley PD, Palis J (1994) GRP-2 proteins contain both CCHC zinc-fingers and a cold shock domain. Plant Cell 6:1522–1523PubMedCrossRefGoogle Scholar
  24. Kwak KJ, Kim YO, Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56:3007–3016PubMedCrossRefGoogle Scholar
  25. Li J, Jia D, Chen X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13:2269–2281PubMedCrossRefGoogle Scholar
  26. Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740PubMedCrossRefGoogle Scholar
  27. Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745PubMedCrossRefGoogle Scholar
  28. Magioli C, Barrôco RMP, Benicio CA, de Santiago-Fernandes LD, Mansur E, Engler G, Margis-Pinheiro M, Sachetto-Martins G (2001) Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci 161:573–581CrossRefGoogle Scholar
  29. Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 101:12759–12764PubMedCrossRefGoogle Scholar
  30. Moriguchi K, Sugita M, Sugiura M (1997) Structure and subcellular localization of a small RNA-binding protein from tobacco. Plant J 12:215–221PubMedCrossRefGoogle Scholar
  31. Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–646PubMedCrossRefGoogle Scholar
  32. Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258:432–442PubMedCrossRefGoogle Scholar
  33. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130PubMedGoogle Scholar
  34. Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127PubMedCrossRefGoogle Scholar
  35. Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908PubMedCrossRefGoogle Scholar
  36. Ossareh-Nazari B, Gwizdek C, Dargemont C (2001) Protein export from the nucleus. Traffic 2:684–689PubMedCrossRefGoogle Scholar
  37. Sachetto-Martins G, Fernandes LD, Félix DB, de Oliveira DE (1995) Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm derived cells. Int J Plant Sci 156:460–470CrossRefGoogle Scholar
  38. Sachetto-Martins G, Franco L, de Oliveira D (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Bioch Biophys Acta 1492:1–14Google Scholar
  39. Sato N (1994) A cold-regulated cyanobacterial gene cluster encodes a RNA-binding protein and ribosomal protein S21. Plant Mol Biol 24:819–823PubMedCrossRefGoogle Scholar
  40. Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436PubMedCrossRefGoogle Scholar
  41. Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289PubMedCrossRefGoogle Scholar
  42. Simpson GG, Quesada V, Henderson IR, Dijkwel PP, Macknight R, Dean C (2004) RNA processing and Arabidopsis flowering time control. Bioch Soc Trans 32:565–566CrossRefGoogle Scholar
  43. Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148:427–440PubMedCrossRefGoogle Scholar
  44. Wilkinson MF, Shyu AB (2001) Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 23:775–787PubMedCrossRefGoogle Scholar
  45. Zchut S, Weiss M, Pick U (2003) Temperature-regulated expression of a glycine-rich RNA-binding protein in the halotolerant alga Dunaliella salina. J Plant Physiol 160:1375–1384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Adriana Flores Fusaro
    • 1
  • Silvia Nora Bocca
    • 1
  • Rose Lucia Braz Ramos
    • 1
  • Rosa Maria Barrôco
    • 2
  • Claudia Magioli
    • 1
  • Vanessa Cardeal Jorge
    • 1
  • Tatiana Cardoso Coutinho
    • 1
  • Camila Martins Rangel-Lima
    • 1
  • Riet De Rycke
    • 2
  • Dirk Inzé
    • 2
  • Gilbert Engler
    • 3
    • 4
  • Gilberto Sachetto-Martins
    • 1
  1. 1.Laboratório de Genética Molecular Vegetal, Departamento de GenéticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB)Ghent UniversityGentBelgium
  3. 3.Laboratoire Associé de l’Institut National de la Recherche Agronomique (France)Universiteit GentGentBelgium
  4. 4.Department for Plant Health and the Environment,Institut National de la Recherche AgronomiqueAntibesFrance

Personalised recommendations