Advertisement

Planta

, Volume 225, Issue 6, pp 1327–1338 | Cite as

MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis

  • Jae-Hoon Jung
  • Chung-Mo ParkEmail author
Original Article

Abstract

The miR166/165 group and its target genes regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development. We demonstrate here that MIR166/165 genes are dynamically controlled in regulating shoot apical meristem (SAM) and floral development in parallel to the WUSCHEL (WUS)-CLAVATA (CLV) pathway. Although miR166 and miR165 cleave same target mRNAs, individual MIR166/165 genes exhibit distinct expression domains in different plant tissues. The MIR166/165 expression is also temporarily regulated. Consistent with the dynamic expression patterns, an array of alterations in SAM activities and floral architectures was observed in the miR166/165-overproducing plants. In addition, when a MIR166a-overexpressing mutant was genetically crossed with mutants defective in the WUS-CLV pathway, the resultant crosses exhibited additive phenotypic effects, suggesting that the miR166/165-mediated signal exerts its role via a distinct signaling pathway.

Keywords

Arabidopsis HD-ZIP III microRNA mRNA cleavage Shoot apical meristem 

Abbreviations

CLV

CLAVATA

CNA

CORONA

FM

Floral meristem

HD-ZIP III

Class III homeodomain-leucine zipper

miRNA

MicroRNA

PHB

PHABULOSA

PHV

PHAVOLUTA

REV

REVOLUTA

SAM

Shoot apical meristem

WUS

WUSCHEL

Notes

Acknowledgments

This work was supported by the BK21, the BioGreen21 (305-20040050), and the National Research Laboratory programs and by grants from KRF (R02-2003-000-10001-0), KISTEP (M1-0219-00-0003), and from the Plant Signaling Network Research Center.

References

  1. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717PubMedCrossRefGoogle Scholar
  2. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619PubMedCrossRefGoogle Scholar
  3. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587PubMedCrossRefGoogle Scholar
  4. Byrne ME (2006) Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes. PLOS Genet 2:785–790CrossRefGoogle Scholar
  5. Carles CC, Choffnes-Inada D, Reville K, Lertpiriyapong K, Fletcher JC (2005) ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132:897–911PubMedCrossRefGoogle Scholar
  6. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  7. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774PubMedCrossRefGoogle Scholar
  8. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914PubMedCrossRefGoogle Scholar
  9. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51PubMedCrossRefGoogle Scholar
  10. Green KA, Prigge MJ, Katzman RB, Clark SE (2005) CORONA, a member of the class III homeodomain-leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17:691–704PubMedCrossRefGoogle Scholar
  11. Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382PubMedCrossRefGoogle Scholar
  12. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  13. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  14. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88PubMedCrossRefGoogle Scholar
  15. Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142PubMedCrossRefGoogle Scholar
  16. Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851PubMedGoogle Scholar
  17. Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84PubMedCrossRefGoogle Scholar
  18. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94PubMedCrossRefGoogle Scholar
  19. Kwon CS, Chen C, Wagner D (2005) WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19:992–1003PubMedCrossRefGoogle Scholar
  20. Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  21. Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814PubMedCrossRefGoogle Scholar
  22. Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130:3163–3173PubMedCrossRefGoogle Scholar
  23. Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA 97:13401–13406PubMedCrossRefGoogle Scholar
  24. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803PubMedCrossRefGoogle Scholar
  25. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364PubMedCrossRefGoogle Scholar
  26. Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815PubMedCrossRefGoogle Scholar
  27. McConnell JR, Emery J, Eshed Y, Bao N, Bowman JL, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713PubMedCrossRefGoogle Scholar
  28. Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236PubMedCrossRefGoogle Scholar
  29. Pfeffer S, Lagos-Quintana M, Tuschl T (2003) Cloning of small RNA molecules. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. John Wiley & Sons, NY, pp 26.4.1–26.4.18Google Scholar
  30. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76PubMedCrossRefGoogle Scholar
  31. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedCrossRefGoogle Scholar
  32. Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977PubMedCrossRefGoogle Scholar
  33. Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedCrossRefGoogle Scholar
  34. Schwab R, Ossowski S, Riester M, Warthmann, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCrossRefGoogle Scholar
  35. Sharma VK, Carles C, Fletcher JC (2003) Maintenance of stem cell populations in plants. Proc Natl Acad Sci USA 100:11823–11829PubMedCrossRefGoogle Scholar
  36. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedCrossRefGoogle Scholar
  37. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65PubMedCrossRefGoogle Scholar
  38. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859PubMedCrossRefGoogle Scholar
  39. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500PubMedCrossRefGoogle Scholar
  40. Williams L, Fletcher JC (2005) Stem cell regulation in the Arabidopsis shoot apical meristem. Curr Opin Plant Biol 8:582–586PubMedCrossRefGoogle Scholar
  41. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668PubMedCrossRefGoogle Scholar
  42. Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440PubMedCrossRefGoogle Scholar
  43. Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H, Sakai H, Meyerowitz EM (2004) HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16:2586–2600PubMedCrossRefGoogle Scholar
  44. Zhong R, Ye ZH (2004) amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Molecular Signaling Laboratory, Department of ChemistrySeoul National UniversitySeoulSouth Korea

Personalised recommendations