, Volume 225, Issue 6, pp 1517–1534 | Cite as

Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids

  • Michael Riedel
  • Anna Eichner
  • Harald Meimberg
  • Reinhard JetterEmail author
Original Article


Plants of the carnivorous genus Nepenthes efficiently trap insects in leaf pitchers, mostly employing epicuticular wax crystals on the pitcher walls to make them slippery for the prey. In the present study, the compositions and micromorphologies of the wax crystals of five Nepenthes species and hybrids were analysed in order to test whether the chemical principles underlying this ecological function are widespread within the genus. Three wax layers could be distinguished within the Nepenthes pitcher cuticles: (1) the outermost part of the crystals forming the platelets visible in standard scanning electron microscopy, (2) the bottom portion of the epicuticular wax crystals, and (3) an intracuticular wax layer. The composition of the intracuticular wax differed significantly from that of the neighbouring epicuticular layer. The compositions of corresponding wax mixtures from all five Nepenthes species and hybrids were very similar, with almost equal amounts of very long chain aldehydes and primary alcohols. While triacontanal (C30 aldehyde) was prevailing in the epicuticular crystals of Nepenthes albomarginata and Nepenthes x intermedia, Nepenthes x superba and Nepenthes x henriana were found to have especially high percentages of dotriacontanal (C32 aldehyde). Nepentheskhasiana” had an intermediate aldehyde composition with almost equal amounts of both chain lengths.


Aldehydes Chain length Cuticle Gas chromatography Intracuticular wax Mass spectrometry Scanning electron microscopy 





Gas chromatography


Mass spectrometry


polymerase chain reaction


Standard deviation


Scanning electron microscopy


Trimethyl silyl



Technical assistance by the staff of the Botanical Garden of the University of Würzburg is gratefully acknowledged. The authors are indebted to Dr. Karin Glenz for providing sequence information for phylogenetic analysis. This work has been supported by the Sonderforschungsbereich 567 “Mechanismen der interspezifischen Interaktion von Organismen” (Germany) and the National Science and Engineering Research Council (Canada).


  1. Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Linnean soc symp series, vol 10. Academic Press, London, pp139–165Google Scholar
  2. Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143PubMedCrossRefGoogle Scholar
  3. Eigenbrode SD, Castagnola T, Roux MB, Steljes L (1996) Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomol Exp Appl 81:335–343CrossRefGoogle Scholar
  4. Elison AM, Gotelli NJ (2001) Evolutionary ecology of carnivorous plants. Trends Ecol Evol 16:623–629CrossRefGoogle Scholar
  5. Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B (1997) Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112:217–224CrossRefGoogle Scholar
  6. Gaume L, Gorb S, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:479–489CrossRefGoogle Scholar
  7. Gaume L, Perret P, Gorb E, Gorb S, Labat JJ, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111CrossRefGoogle Scholar
  8. Gniwotta F, Vogg G, Gartmann V, Carver TLW, Riederer M, Jetter R (2005) What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Plant Physiol 139:519–530PubMedCrossRefGoogle Scholar
  9. Gorb E, Haas K, Henrich A, Enders S, Barbakadze N, Gorb S (2005) Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J Exp Biol 208:4651–4662PubMedCrossRefGoogle Scholar
  10. Guhling O, Kinzler C, Dreyer M, Bringmann G, Jetter R (2005) Surface composition of myrmecophytic plants: cuticular wax and glandular trichomes on leaves of Macaranga tanarius. J Chem Ecol 31:2325–2343CrossRefGoogle Scholar
  11. Haas K, Brune T, Rücker E (2001) Epicuticular wax crystalloids in rice and sugar cane leaves are reinforced by polymeric aldehydes. J Appl Bot 75:178–187Google Scholar
  12. Jeffree CE, Baker EA, Holloway PJ (1975) Ultrastructure and recrystallisation of plant epicuticular waxes. New Phytol 75:539–549CrossRefGoogle Scholar
  13. Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737PubMedCrossRefGoogle Scholar
  14. Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23:619–628CrossRefGoogle Scholar
  15. Juniper BE (1995) Waxes on plant surfaces and their interactions with insects. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, West Ferry, pp 157–176Google Scholar
  16. Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, LondonGoogle Scholar
  17. Knoll F (1914) Über die Ursache des Ausgleitens der Insektenbeine an wachsbedeckten Pflanzenteilen. Jb Wiss Bot 54:448–459Google Scholar
  18. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80PubMedCrossRefGoogle Scholar
  19. Macey MJK, Barber HN (1970) Chemical genetics of wax formation on leaves of Pisum sativum. Phytochemistry 9:5–12CrossRefGoogle Scholar
  20. Macfarlane JM (1893) Observations on pitchered insectivorous plants, part II. Ann Bot 7:401–458Google Scholar
  21. Meimberg H, Dittrich P, Bringmann G, Schlauer J, Heubl G (2000) Molecular phylogeny of Caryophyllidae s.l. based on MatK sequences with special emphasis on carnivorous taxa. Plant Biol 2:218–228CrossRefGoogle Scholar
  22. Meimberg H, Thalhammer S, Brachmann A, Heubl G (2006) Comparative analysis of a translocated copy of the trnK intron in the carnivorous genus Nepenthes (Nepenthaceae). Mol Phylogenet Evol 39:478–490PubMedCrossRefGoogle Scholar
  23. Meimberg H, Wistuba A, Dittrich P, Heubl G (2001) Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid-trnK intron sequence data. Plant Biol 3:164–175CrossRefGoogle Scholar
  24. Mladenova K, Stoianova-Ivanova B, Daskalov RM (1976) Trialkyltrioxanes in flower wax of some decorative roses. Phytochemistry 15:419–420CrossRefGoogle Scholar
  25. Owen TP Jr, Lennon KA (1999) Structure and development of the pitchers from the carnivorous plant Nepenthes alata (Nepenthaceae). Am J Bot 86:1382–1390PubMedCrossRefGoogle Scholar
  26. Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97PubMedCrossRefGoogle Scholar
  27. Riederer M, Markstädter C (1996) Cuticular waxes: a critical assessment of current knowledge. In: Kerstiens G (ed) Plant cuticles-an integrated functional approach. BIOS, Oxford, pp 189–200Google Scholar
  28. Riederer M, Schneider G (1989) Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: Evidence for selective extraction. Physiol Plant 77:373–384CrossRefGoogle Scholar
  29. Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107Google Scholar
  30. Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410PubMedCrossRefGoogle Scholar
  31. Wen M, Buschhaus C, Jetter R (2006) Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry 67:1808–1817PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Riedel
    • 1
  • Anna Eichner
    • 1
  • Harald Meimberg
    • 2
  • Reinhard Jetter
    • 3
    Email author
  1. 1.Julius-von-Sachs-Institut für BiowissenschaftenUniversität Würzburg, Lehrstuhl für Botanik IIWürzburgGermany
  2. 2.Department of Plant Sciences, PESUniversity of California DavisDavisUSA
  3. 3.Department of Botany and Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations