, Volume 224, Issue 6, pp 1495–1502 | Cite as

Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants

  • Hila Damari-Weissler
  • Michal Kandel-Kfir
  • David Gidoni
  • Anahit Mett
  • Eddy Belausov
  • David Granot
Rapid Communication


Four hexokinase (LeHXK1–4) and four fructokinase (LeFRK1–4) genes were identified in tomato plants. Previous GFP fusion studies indicate that the gene product of LeHXK3 is associated with the mitochondria while that of LeHXK4 is located within plastids. In this study we found that the enzyme encoded by the fructokinase gene LeFRK3 is also located within plastids. The presence of LeFrk3 enzyme in plastids raises the question of the origin of fructose in these organelles. The other three FRKs enzymes, LeFrk1&2&4, are located in the cytosol. Unlike LeFrk1&2&4, the two additional HXKs, LeHxk1&2, share a common membrane anchor domain and are associated with the mitochondria similar to LeHxk3. The difference in the locations of the cytoplasmic FRK and HXK isozymes suggests that glucose phosphorylation is confined to defined special intracellular localizations while fructose phosphorylation is less confined.


Fructokinase GFP Hexokinase Hexose phosphorylation Intracellular localization Tomato (Lycopersicon esculentum





Green fluorescent protein





This research was supported by research grant No. 582/01 from The Israel Science Foundation, and by research grant No. IS-3326-02C from BARD, the United States—Israel Binational Agricultural and Development Fund.


  1. Butowt R, Granot D, Rodriguez-Garcia MI (2003) A putative plastidic glucose translocator is expressed in heterotrophic tissues that do not contain starch, during olive (Olea europea L) fruit ripening. Plant Cell Physiol 44:1152–1161PubMedCrossRefGoogle Scholar
  2. Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta (in press)Google Scholar
  3. Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266PubMedCrossRefGoogle Scholar
  4. Dai N, German MA, Matsevitz T, Hanael R, Swartzberg D, Yeselson Y, Petreikov M, Schaffer AA, Granot D (2002a) LeFRK2, a gene encoding the major fructokinase in tomato fruits, is not required for starch accumulation in developing fruits. Plant Sci 162:423–430CrossRefGoogle Scholar
  5. Dai N, Kandel M, Petreikov M, Levine I, Ricard B, Rothan C, Schaffer AA, Granot D (2002b) The tomato hexokinase LeHXK1 cloning, mapping, expression pattern and phylogenetic relationships. Plant Sci 163:581–590CrossRefGoogle Scholar
  6. Draper J, Scott R, Hamil J (1988) Transformation of dicotiledonous plant cells using the Ti plasmid of A. tumefaciens and the Ri plasmid of A. rhizogenes. Blackwell, OxfordGoogle Scholar
  7. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRefGoogle Scholar
  8. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828PubMedCrossRefGoogle Scholar
  9. Galina A, Reis M, Albuquerque MC, Puyou AG, Puyou MT, de Meis L (1995) Different properties of the mitochondrial and cytosolic hexokinases in maize roots. Biochem J 309:105–112PubMedGoogle Scholar
  10. German MA, Dai N, Chmelnitsky I, Sobolev I, Salts Y, Barg R, Schaffer AA, Granot D (2002) LeFRK4, a novel tomato (Lycopersicon esculentum Mill.) fructokinase specifically expressed in stamens. Plant Sci 163:607–613CrossRefGoogle Scholar
  11. German MA, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer AA, Granot D (2003) Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J 34:837–846PubMedCrossRefGoogle Scholar
  12. German MA, Asher I, Petreikov M, Dai N, Schaffer AA, Granot D (2004) Cloning, expression and characterization of LeFRK3, the fourth tomato (Lycopersicon esculentum Mill.) gene encoding fructokinase. Plant Sci 166:285–291CrossRefGoogle Scholar
  13. Gerrits N, Turk SC, van Dun KP, Hulleman SH, Visser RG, Weisbeek PJ, Smeekens SC (2001) Sucrose metabolism in plastids. Plant Physiol 125:926–934PubMedCrossRefGoogle Scholar
  14. Giege P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151PubMedCrossRefGoogle Scholar
  15. Giese JO, Herbers K, Hoffmann M, Klosgen RB, Sonnewald U (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett 579:827–831PubMedCrossRefGoogle Scholar
  16. Gonzali S, Pistelli L, De Bellis L, Alpi A (2001) Characterization of two Arabidopsis thaliana fructokinases. Plant Sci 160:1107–1114PubMedCrossRefGoogle Scholar
  17. Jang J-C, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19PubMedCrossRefGoogle Scholar
  18. Jiang H, Dian W, Liu F, Wu P (2003) Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry 62:47–52PubMedCrossRefGoogle Scholar
  19. Kanayama Y, Dai N, Granot D, Petreikov M, Schaffer A, Bennett AB (1997) Divergent fructokinase genes are differentially expressed in tomato. Plant Physiol 113:1379–1384PubMedCrossRefGoogle Scholar
  20. Kanayama Y, Granot D, Dai N, Petreikov M, Schaffer A, Powell A, Bennett AB (1998) Tomato fructokinases exhibit differential expression and substrate regulation. Plant Physiol 117:85–90PubMedCrossRefGoogle Scholar
  21. Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. PlantaGoogle Scholar
  22. Kohler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89PubMedGoogle Scholar
  23. Menu T, Rothan C, Dai N, Petreikov M, Etienne C, Destrac-Irvine A, Schaffer A, Granot D, Ricard B (2001) Cloning and characterization of a cDNA encoding hexokinase from tomato. Plant Sci 160:209–218PubMedCrossRefGoogle Scholar
  24. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336PubMedCrossRefGoogle Scholar
  25. Nakashima RA, Mangan PS, Colombini M, Pedersen PL (1986) Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25:1015–1021PubMedCrossRefGoogle Scholar
  26. Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of frk1 and frk2 expression in tomato. Plant Physiol 129:1119–1126PubMedCrossRefGoogle Scholar
  27. Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447PubMedCrossRefGoogle Scholar
  28. Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5:114–133PubMedCrossRefGoogle Scholar
  29. Petreikov M, Dai N, Granot D, Schaffer AA (2001) Characterization of native and yeast-expressed tomato fruit fructokinase enzymes. Phytochemistry 58:841–847PubMedCrossRefGoogle Scholar
  30. Renz A, Stitt M (1993) Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190:166–175Google Scholar
  31. Schnarrenberger C (1990) Characterization and compartmentation in green leaves, of hexokinases with different specificities for glucose, fructose, and mannose and for nucleoside triphosphates. Planta 181:249–255CrossRefGoogle Scholar
  32. Singh KK, Chen C, Epstein DK, Gibbs M (1993) Respiration of Sugars in Spinach (Spinacia oleracea), Maize (Zea mays), and Chlamydomonas reinhardtii F-60 chloroplasts with emphasis on the hexose kinases. Plant Physiol 102:587–593PubMedGoogle Scholar
  33. Taylor MA, Ross HA, Gardner A, Davies HV (1995) Characterization of a cDNA encoding fructokinase from potato (Solanum tuberosum L). J Plant Physiol 145:253–256Google Scholar
  34. Veramendi J, Roessner U, Renz A, Willmitzer L, Trethewey RN (1999) Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121:123–134PubMedCrossRefGoogle Scholar
  35. Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501PubMedCrossRefGoogle Scholar
  36. Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge U, Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18PubMedCrossRefGoogle Scholar
  37. Wilson JE (1980) Brain hexokinase, the prototype ambiquitous enzyme. Curr Top Cell Regul 16:1–54PubMedGoogle Scholar
  38. Zhang S, Nichols SE, Dong JG (2003) Cloning and characterization of two fructokinases from maize. Plant Sci 165:1051–1058CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hila Damari-Weissler
    • 1
  • Michal Kandel-Kfir
    • 1
  • David Gidoni
    • 1
  • Anahit Mett
    • 1
  • Eddy Belausov
    • 1
  • David Granot
    • 1
  1. 1.Institute of Plant Sciences, Agricultural Research OrganizationThe Volcani CenterBet DaganIsrael

Personalised recommendations