Skip to main content
Log in

A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

McCPK1 (Mesembryanthemum crystallinum calcium-dependent protein kinase 1) mRNA expression is induced transiently by salinity and water deficit stress and also McCPK1 undergoes dynamic subcellular localization changes in response to these same stresses. Here we have confirmed that low humidity is capable of causing a drastic change in McCPK1’s subcellular localization. We attempted to elucidate this phenomenon by isolating components likely to be involved in this process. McCAP1 (M. crystallinum CDPK adapter protein 1) was cloned in a yeast two-hybrid screen with a constitutively active McCPK1 as bait. We show that McCPK1 and McCAP1 can interact in the yeast two-hybrid system, in vitro, and in vivo as demonstrated by coimmunoprecipitation experiments from plant extracts. However, McCAP1 does not appear to be a substrate for McCPK1. DsRed–McCAP1 and EGFP–McCPK1 fusions colocalize in epidermal cells of ice plants exposed to low humidity. McCAP1 is homologous to a family of proteins in Arabidopsis with no known function. Computational threading analysis suggests that McCAP1 is likely to be an intermediate filament protein of the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CDPK:

Calcium-dependent protein kinase

YTH:

Yeast two-hybrid

6× His-tag :

Six histidine tag

References

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Rao KS (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  PubMed  CAS  Google Scholar 

  • Billker O, Dechampes S, Tewari R, wenig G, Franke-Fayard B, Brinkmann V (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malarial parasite. Cell 117:503–514

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357:400–410

    Article  PubMed  CAS  Google Scholar 

  • Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum. Plant Physiol 135:1430–1446

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Christophe D, Christophe-Hobertus C, Pichon B (2000) Nuclear targeting of proteins: how many different signals? Cell Signal 12:337–341

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ehrhardt D (2000) Dead cells don’t dance: insights from live-cell imaging in plants. Curr Opin Plant Biol 3:532–537

    Article  PubMed  CAS  Google Scholar 

  • Dammann D, Ichida A, Hong B, Romanowsky S, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    Article  PubMed  CAS  Google Scholar 

  • De Angelis DA (1999) Why FRET over genomics? Physiol Genomics 1:93–99

    PubMed  Google Scholar 

  • Geitz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269

    Google Scholar 

  • Grant BD, Hemmer W, Tsigelny I (1998) Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry 37:7708–7715

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    Article  PubMed  CAS  Google Scholar 

  • Harper JF (2001) Dissecting calcium oscillators in plant cells. Trends Plant Sci 6:395–397

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis, and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33:7267–7277

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hawes CR, Satiat-Jeunemaitre B (2001) Trekking along the cytoskeleton. Plant Physiol 125:119–122

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil (revised). Univ. of Cal, Col. of Agric. Exper. Sta., Berkeley, pp 1–38

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford H, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97:6224–6229

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Ishino T, Orito Y, Chinzei Y, Yuda M (2006) A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 59:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Kelly LA, MacCallum RM, Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:501–522

    Article  CAS  Google Scholar 

  • Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13:287–301

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lu SX Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021

    Article  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Snyder M (2000) Drivers and passengers wanted! The role of kinesin-associated proteins. Trends Cell Biol 10:281–289

    Article  PubMed  CAS  Google Scholar 

  • Martín ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435

    Article  PubMed  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: Improved prediction of coiled coils from sequence. Bioinformatics 22:356–358

    Article  PubMed  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318

    Article  PubMed  CAS  Google Scholar 

  • Newman JRS, Wolf E, Kim PS (2000) A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:13203–13208

    Article  PubMed  CAS  Google Scholar 

  • Patharkar OR, Cushman JC (2000) A stress-induced calcium dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24:679–691

    Article  PubMed  CAS  Google Scholar 

  • Pical C, Fredlund KM, Petit PX, Sommarin M, Moller IM (1993) The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Lett 336:347–351

    Article  PubMed  CAS  Google Scholar 

  • Restrepo MA, Freed DD, Carrington JC (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998

    Article  PubMed  CAS  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signaling pathways in plant cells. New Phytol 151:7–33

    Article  CAS  Google Scholar 

  • Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca2+-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417

    Google Scholar 

  • Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://www.genetics.mgh.harvard.edu/sheenweb/

  • Smith HM, Raikhel NV (1998) Nuclear localization signal receptor importin alpha associates with the cytoskeleton. Plant Cell 10:1791–1799

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Radzio-Andzelm E, Akamine MP, Taylor SS (1999) The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Prog Biophys Mol Biol 71:313–341

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A, McClure M, Huang F, Carter R (2000) Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10:1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszynska G (2005) A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol 139:1970–1983

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vitart V, Christodoulou J, Huang JF, Chazin WJ, Harper JF (2000) Intramolecular activation of a Ca2+-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase. Biochemistry 39:4004–4011

    Article  PubMed  CAS  Google Scholar 

  • Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ (2000) Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Proteins 39:343–357

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tahar Taybi for providing the McCPK1–SGFP and the McCPK1(Δ1–70)–SGFP constructs. We appreciate all of Asuka Itaya’s help with the microscopy. We are grateful to Dr. Phillip James for providing us with the yeast host stain, PJ69-4A, that was used for this work. We also thank Jen Sheen for providing us with the 35S-SGFP-TYG-nos and the HBT95 constructs, James Carrington for providing the pRTL2 construct, and Felix Randow for a mouse cDNA library. The authors would also like to thank Joan Rowe of University of Nevada Genomics Center for automated DNA sequencing services. This work was supported in part by the U.S. Department of Agriculture, National Research Initiative, Competitive Grants Program Plant Responses to the Environment Program (grant no. 98-35100-6035), by the National Science Foundation 2010 Program (grant no. MCB-0114769), and the Nevada Agricultural Experiment Station, and is published as publication No. 03066928 of the University of Nevada Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Cushman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patharkar, O.R., Cushman, J.C. A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta 225, 57–73 (2006). https://doi.org/10.1007/s00425-006-0330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0330-0

Keywords

Navigation