, Volume 224, Issue 4, pp 771–781 | Cite as

Protein interaction networks in plants

Original Article


Protein–protein interactions are fundamental to virtually every aspect of cellular functions. With the development of high-throughput technologies of both the yeast two-hybrid system and tandem mass spectrometry, genome-wide protein-linkage mapping has become a major objective in post-genomic research. While at least partial “interactome” networks of several model organisms are already available, in the plant field, progress in this respect is slow. However, even with comprehensive protein interaction data still missing, substantial recent advance in the graph-theoretical functional interpretation of complex network architectures might pave the way for novel approaches in plant research. This article reviews current progress and discussions in network biology. Emphasis is put on the question of what can be learned about protein functions and cellular processes by studying the topology of complex protein interaction networks and the evolutionary mechanisms underlying their development. Particularly the intermediate and local levels of network organization—the modules, motifs and cliques—are increasingly recognized as the operational units of biological functions. As demonstrated by some recent results from systematic analyses of plant protein families, protein interaction networks promise to be a valuable tool for a molecular understanding of functional specificities and for identifying novel regulatory components and pathways.


Network topology Functional modules Functional specificity Gene duplication Interactome 



I would like to thank Francesco Salamini, Peter Schreier and Martin Hülskamp for constant support and helpful discussions and Klaus Richter for help with the bioinformatic network analysis. I apologize to those colleagues whose work was not cited because of space limitations. The work was supported by the Arabidopsis Functional Genomics Network (DFG) and the Max Planck Society.


  1. Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13:193–202CrossRefPubMedGoogle Scholar
  2. Arita M (2005) Scale-freeness and biological networks. J Biochem (Tokyo) 138:1–4Google Scholar
  3. Bader GD, Hogue CW (2002) Analyzing yeast protein–protein interaction data obtained from different sources. Nat Biotechnol 20:991–997CrossRefPubMedGoogle Scholar
  4. Bader JS, Chaudhuri A, Rothberg JM, Chant J (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22:78–85CrossRefPubMedGoogle Scholar
  5. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedGoogle Scholar
  6. Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69PubMedCrossRefGoogle Scholar
  7. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefPubMedGoogle Scholar
  8. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924CrossRefPubMedGoogle Scholar
  9. Becker A, Bey M, Burglin TR, Saedler H, Theissen G (2002) Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol 212:452–457CrossRefPubMedGoogle Scholar
  10. Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13:2455–2470CrossRefPubMedGoogle Scholar
  11. Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51CrossRefPubMedGoogle Scholar
  12. Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111CrossRefPubMedGoogle Scholar
  13. Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100CrossRefPubMedGoogle Scholar
  14. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105PubMedGoogle Scholar
  15. Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865CrossRefPubMedGoogle Scholar
  16. Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279CrossRefPubMedGoogle Scholar
  17. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537CrossRefPubMedGoogle Scholar
  18. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14:1324–1332CrossRefPubMedGoogle Scholar
  19. Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950PubMedGoogle Scholar
  20. Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. Bioessays 26:479–484CrossRefPubMedGoogle Scholar
  21. Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(Suppl 2):R171–R181CrossRefPubMedGoogle Scholar
  22. Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 15:4330–4343PubMedGoogle Scholar
  23. Dziembowski A, Seraphin B (2004) Recent developments in the analysis of protein complexes. FEBS Lett 556:1–6CrossRefPubMedGoogle Scholar
  24. Fields S (2005) High-throughput two-hybrid analysis. FEBS J 272:5391–5399CrossRefPubMedGoogle Scholar
  25. Fitch WM (2000) Homology a personal view on some of the problems. Trends Genet 16:227–231CrossRefPubMedGoogle Scholar
  26. de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433CrossRefPubMedGoogle Scholar
  27. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C et al (2005) Protein interaction mapping: a Drosophila case study. Genome Res 15:376–384CrossRefPubMedGoogle Scholar
  28. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat Genet 37:351–352CrossRefPubMedGoogle Scholar
  29. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752CrossRefPubMedGoogle Scholar
  30. Gagneur J, Krause R, Bouwmeester T, Casari G (2004) Modular decomposition of protein–protein interaction networks. Genome Biol 5:R57CrossRefPubMedGoogle Scholar
  31. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147PubMedGoogle Scholar
  32. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736CrossRefPubMedGoogle Scholar
  33. Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Bussow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 15:853–865CrossRefPubMedGoogle Scholar
  34. Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci USA 100:4372–4376CrossRefPubMedMathSciNetGoogle Scholar
  35. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919CrossRefPubMedGoogle Scholar
  36. Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JD, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, Li N, Mani R, Hyman AA, Sonnichsen B, Echeverri CJ, Roth FP, Vidal M, Piano F (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436:861–865CrossRefPubMedGoogle Scholar
  37. Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912CrossRefPubMedGoogle Scholar
  38. Halperin I, Wolfson H, Nussinov R (2004) Protein–protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure (Camb) 12:1027–1038CrossRefGoogle Scholar
  39. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93CrossRefPubMedGoogle Scholar
  40. Han JD, Dupuy D, Bertin N, Cusick ME, Vidal M (2005) Effect of sampling on topology predictions of protein–protein interaction networks. Nat Biotechnol 23:839–844CrossRefPubMedGoogle Scholar
  41. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefPubMedGoogle Scholar
  42. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183CrossRefPubMedGoogle Scholar
  43. Huang TW, Tien AC, Huang WS, Lee YC, Peng CL, Tseng HH, Kao CY, Huang CY (2004) POINT: a database for the prediction of protein–protein interactions based on the orthologous interactome. Bioinformatics 20:3273–3276CrossRefPubMedGoogle Scholar
  44. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377PubMedGoogle Scholar
  45. Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606PubMedGoogle Scholar
  46. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y (2000) Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147CrossRefPubMedGoogle Scholar
  47. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574CrossRefPubMedGoogle Scholar
  48. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42CrossRefPubMedGoogle Scholar
  49. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778CrossRefPubMedGoogle Scholar
  50. Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198CrossRefPubMedGoogle Scholar
  51. Keller EF (2005) Revisiting “scale-free” networks. Bioessays 27:1060–1068CrossRefPubMedGoogle Scholar
  52. Kersten B, Burkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U (2002) Large-scale plant proteomics. Plant Mol Biol 48:133–141CrossRefPubMedGoogle Scholar
  53. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345:1281–1294CrossRefPubMedGoogle Scholar
  54. Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20:1963–1977CrossRefPubMedGoogle Scholar
  55. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543CrossRefPubMedGoogle Scholar
  56. Loomis WF, Sternberg PW (1995) Genetic networks. Science 269:649PubMedGoogle Scholar
  57. Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci USA 100:13407–13412CrossRefPubMedGoogle Scholar
  58. Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M (2001) Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Res 11:2120–2126CrossRefPubMedGoogle Scholar
  59. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403CrossRefPubMedGoogle Scholar
  60. Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21CrossRefPubMedGoogle Scholar
  61. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefPubMedGoogle Scholar
  62. Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein–protein interactions. Proc Natl Acad Sci USA 102:10930–10935CrossRefPubMedGoogle Scholar
  63. Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437:56–60CrossRefPubMedGoogle Scholar
  64. Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in the regulation of Knox gene function. Plant J 27:13–23CrossRefPubMedGoogle Scholar
  65. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300:2097–2101CrossRefPubMedGoogle Scholar
  66. Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551PubMedGoogle Scholar
  67. Pastor-Satorras R, Smith E, Sole RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210CrossRefPubMedGoogle Scholar
  68. Paz-Ares J, The REGIA Consortium (2002) REGIA, an EU project on functional genomics of transcription factors from Arabidopsis thaliana. Comp Funct Genomics 3(2):102–108CrossRefPubMedGoogle Scholar
  69. Pereira-Leal JB, Teichmann SA (2005) Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15:552–559CrossRefPubMedGoogle Scholar
  70. Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54:49–57CrossRefPubMedGoogle Scholar
  71. Piehler J (2005) New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15:4–14CrossRefPubMedGoogle Scholar
  72. Poyatos JF, Hurst LD (2004) How biologically relevant are interaction-based modules in protein networks? Genome Biol 5:R93CrossRefPubMedGoogle Scholar
  73. Przulj N, Corneil DG, Jurisica I (2004) Modeling interactome: scale-free or geometric? Bioinformatics 20:3508–3515CrossRefPubMedGoogle Scholar
  74. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555CrossRefPubMedGoogle Scholar
  75. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM (2005) Probabilistic model of the human protein–protein interaction network. Nat Biotechnol 23:951–959CrossRefPubMedGoogle Scholar
  76. Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767CrossRefPubMedGoogle Scholar
  77. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128–1133CrossRefPubMedGoogle Scholar
  78. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178CrossRefPubMedGoogle Scholar
  79. Rubin GM (2001) The draft sequences. Comparing species. Nature 409:820–821CrossRefPubMedGoogle Scholar
  80. Smith HM, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584CrossRefPubMedGoogle Scholar
  81. Snel B, Huynen MA (2004) Quantifying modularity in the evolution of biomolecular systems. Genome Res 14:391–397CrossRefPubMedGoogle Scholar
  82. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128CrossRefPubMedGoogle Scholar
  83. Stanyon CA, Liu G, Mangiola BA, Patel N, Giot L, Kuang B, Zhang H, Zhong J, Finley RL (2004) A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol 5:R96CrossRefPubMedGoogle Scholar
  84. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122:957–968CrossRefPubMedGoogle Scholar
  85. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456CrossRefPubMedGoogle Scholar
  86. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276CrossRefPubMedGoogle Scholar
  87. Szathmary E, Jordan F, Pal C (2001) Molecular biology and evolution. Can genes explain biological complexity? Science 292:1315–1316CrossRefPubMedGoogle Scholar
  88. Tanaka R, Yi TM, Doyle J (2005) Some protein interaction data do not exhibit power law statistics. FEBS Lett 579:5140–5144CrossRefPubMedGoogle Scholar
  89. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643CrossRefPubMedGoogle Scholar
  90. Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet 36:492–496CrossRefPubMedGoogle Scholar
  91. Teichmann SA, Park J, Chothia C (1998) Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proc Natl Acad Sci USA 95:14658–14663CrossRefPubMedGoogle Scholar
  92. Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M (2004) Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. Mol Cell 13:469–482CrossRefPubMedGoogle Scholar
  93. Theissen G (2002) Secret life of genes. Nature 415:741PubMedGoogle Scholar
  94. Tornow S, Mewes HW (2003) Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31:6283–6289CrossRefPubMedGoogle Scholar
  95. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627CrossRefPubMedGoogle Scholar
  96. Vergassola M, Vespignani A, Dujon B (2005) Cooperative evolution in protein complexes of yeast from comparative analyses of its interaction network. Proteomics 5:3116–3119CrossRefPubMedGoogle Scholar
  97. Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335CrossRefPubMedGoogle Scholar
  98. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361CrossRefPubMedGoogle Scholar
  99. Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292PubMedGoogle Scholar
  100. Wagner A (2003) How the global structure of protein interaction networks evolves. Proc Biol Sci 270:457–466CrossRefPubMedGoogle Scholar
  101. Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122CrossRefPubMedGoogle Scholar
  102. Wall DP, Fraser HB, Hirsh AE (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711CrossRefPubMedGoogle Scholar
  103. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMedGoogle Scholar
  104. Wolberger C (1999) Multiprotein–DNA complexes in transcriptional regulation. Annu Rev Biophys Biomol Struct 28:29–56CrossRefPubMedGoogle Scholar
  105. Wuchty S (2004) Evolution and topology in the yeast protein interaction network. Genome Res 14:1310–1314CrossRefPubMedGoogle Scholar
  106. Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5:444–449CrossRefPubMedGoogle Scholar
  107. Wuchty S, Oltvai ZN, Barabasi AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179CrossRefPubMedGoogle Scholar
  108. Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087CrossRefPubMedGoogle Scholar
  109. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc Natl Acad Sci USA 101:5934–5939CrossRefPubMedGoogle Scholar
  110. Yook SH, Oltvai ZN, Barabasi AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942CrossRefPubMedGoogle Scholar
  111. Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M (2004) Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res 14:1107–1118CrossRefPubMedGoogle Scholar
  112. Zhang L, Gaut BS, Vision TJ (2001) Gene duplication and evolution. Science 293:1551CrossRefPubMedGoogle Scholar
  113. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869CrossRefPubMedGoogle Scholar
  114. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Botanisches Institut IIIUniversität zu KölnKolnGermany

Personalised recommendations