Planta

, Volume 224, Issue 3, pp 485–495 | Cite as

Taproot promoters cause tissue specific gene expression within the storage root of sugar beet

  • Heiko Oltmanns
  • Dorothee U. Kloos
  • Waltraud Brieß
  • Maike Pflugmacher
  • Dietmar J. Stahl
  • Reinhard Hehl
Original Article

Abstract

The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.

Keywords

Beta β-Glucuronidase Luciferase Storage roots Tissue specificity Transgenic plants 

Abbreviations

His1-r

Linker histone variant

GUS

-Glucuronidase

LUC

Luciferase

Mll

Major latex-like gene

PCR

Polymerase chain reaction

Tlp

Thaumatin-like protein

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1988) Current protocols in molecular biology. Greene & Wiley Interscience, New YorkGoogle Scholar
  2. Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197CrossRefPubMedGoogle Scholar
  3. Bosemark NO (1993) Genetics and breeding. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman & Hall, London, pp 67–119Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 7:248–254CrossRefGoogle Scholar
  5. Elliott MC, Weston GD (1993) Biology and physiology of the sugar-beet plant. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman & Hall, London, pp 37–66Google Scholar
  6. Faurie R, Fries G (1999) From sugar beet molasses to Lyphan. Integrated quality management from the raw material to the drug. Adv Exp Med Biol 467:443–452PubMedGoogle Scholar
  7. Hehl R, Baker B (1989) Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol Gen Genet 217:53–59CrossRefPubMedGoogle Scholar
  8. Honma MA, Baker BJ, Waddell CS (1993) High-frequency transposition of Ds-ALS in Arabidopsis. Proc Natl Acad Sci USA 90:6242–6246PubMedCrossRefGoogle Scholar
  9. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  10. Jefferson RA (1987) Assaying chimaric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  11. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  12. Kloos DU, Oltmanns H, Dock C, Stahl D, Hehl R (2002) Isolation and molecular analysis of six taproot expressed genes from sugar beet. J Exp Bot 53:1533–1534CrossRefPubMedGoogle Scholar
  13. Köhler U, Liaud M-F, Mendel RR, Cerff R, Hehl R (1995) The maize GapC4 promoter confers anaerobic reporter gene expression and shows homology to the maize anthocyanin regulatory locus C1. Plant Mol Biol 29:1293–1298CrossRefPubMedGoogle Scholar
  14. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue -specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  15. Lindsey K, Gallois P (1990) Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens. J Exp Bot 41:529–536CrossRefGoogle Scholar
  16. Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissue. Anal Biochem 163:16–20CrossRefPubMedGoogle Scholar
  17. Nagel R, Elliott A, Masel A, Birch RG, Manners JM (1990) Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiol Lett 67:325–328CrossRefGoogle Scholar
  18. Olszewski NE, Martin FB, Ausubel FM (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res 16:10765–10782PubMedCrossRefGoogle Scholar
  19. Potenza C, Aleman L, Sengupta-Goplan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22CrossRefGoogle Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  21. Schmidt K, Heberle B, Kurrasch J, Nehls R, Stahl DJ (2004) Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene. Plant Mol Biol 55:835–852PubMedGoogle Scholar
  22. Sevenier R, Hall RD, van der Meer IM, Hakkert HJ, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846CrossRefPubMedGoogle Scholar
  23. Stahl DJ, Kloos DU, Hehl R (2004) A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet. BMC Biotechnol 4:31CrossRefPubMedGoogle Scholar
  24. Thurau T, Kifle S, Jung C, Cai D (2003) The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol 52:643–660CrossRefPubMedGoogle Scholar
  25. Vainstein A, Fisher M, Ziv M (1993) Applicability of reporter genes to carnation transformation. HortScience 28:1122–1124Google Scholar
  26. Weyens G, Ritsema T, Van Dun K, Meyer D, Lommel M, Lathouwers J, Rosquin I, Denys P, Tossens A, Nijs M, Turk S, Gerrits N, Bink S, Walraven B, Lefèbvre M, Smeekens S (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J 2:321–327CrossRefPubMedGoogle Scholar
  27. Winner C (1993) History of the crop. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman & Hall, London, pp 1–35Google Scholar
  28. Wozniak CA, Owens LD (1994) Native beta-glucuronidase activity in sugarbeet (Beta vulgaris). Physiol Plant 90:763–771CrossRefGoogle Scholar
  29. Zhang CL, Chen DF, McCormac AC, Scott NW, Elliott MC, Slater A (2001) Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Mol Biotechnol 17:109–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Heiko Oltmanns
    • 2
  • Dorothee U. Kloos
    • 3
  • Waltraud Brieß
    • 1
  • Maike Pflugmacher
    • 1
  • Dietmar J. Stahl
    • 1
  • Reinhard Hehl
    • 4
  1. 1.PLANTA Angewandte Pflanzengenetik und Biotechnologie GmbHEinbeck Germany
  2. 2.Department of Biological SciencesPurdue UniversityINUSA
  3. 3.Definiens AGMünchenGermany
  4. 4.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations