Advertisement

Planta

, Volume 222, Issue 3, pp 418–427 | Cite as

AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold

  • Oliver Meyerhoff
  • Katharina Müller
  • M. Rob G. Roelfsema
  • Andreas Latz
  • Benoit Lacombe
  • Rainer Hedrich
  • Petra Dietrich
  • Dirk BeckerEmail author
Original Article

Abstract

The Arabidopsis genome encodes for 20 members of putative ligand-gated channels, termed glutamate receptors (GLR). Despite the fact that initial studies suggested a role for GLRs in various aspects of photomorphogenesis, calcium homeostasis or aluminium toxicity, their functional properties and physiological role in plants remain elusive. Here, we have focussed on AtGLR3.4, which is ubiquitously expressed in Arabidopsis including roots, vascular bundles, mesophyll cells and guard cells. AtGLR3.4 encodes a glutamate-, touch-, and cold-sensitive member of this gene family. Abiotic stress stimuli such as touch, osmotic stress or cold stimulated AtGLR3.4 expression in an abscisic acid-independent, but calcium-dependent manner. In plants expressing the Ca2+ -reporter apoaequorin, glutamate as well as cold elicited cytosolic calcium elevations. Upon glutamate treatment of mesophyll cells, the plasma membrane depolarised by about 120 mV. Both glutamate responses were transient in nature, sensitive to glutamate receptor antagonists, and were subject to desensitisation. One hour after eliciting the first calcium signal, a 50% recovery from desensitisation was observed, reflecting the stimulus-induced fast activation of AtGLR3.4 transcription. We thus conclude that AtGLR3.4 in particular and GLRs in general could play an important role in the Ca2+ -based, fast transmission of environmental stress.

Keywords

Calcium Cold Glutamate Receptor Touch 

Abbreviations

GLR

Glutamate receptor

DNQX

6,7-dinitroquinoxaline-2,3-dione

CNQX

6-cyano-7-nitro-quinoxaline-2,3-dione

MNQX

5,7-Dinitro-1,4-dihydro-2,3-quinoxalinedione

GABA

γ-aminobutyrate

CHX

Cycloheximide

Notes

Acknowledgements

We thank K. Neuwinger and D. Giehl (University of Würzburg, Ger) for assistance during the Ca2+ measurements. We are grateful to A. Trewavas (University of Edinburgh, UK) for supplying us with seeds of apoaequorin-expressing Arabidopsis plants. This work was funded by DFG grants and Körber European Science Award to RH, and by a DFG grant (SPP1108) to PD and DB.

References

  1. Baum G, Long JC, Jenkins GI, Trewavas AJ (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96:13554–13559CrossRefPubMedGoogle Scholar
  2. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis “open-rectifying” K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+ dependent manner. Proc Natl Acad Sci USA 101:15621–15626CrossRefPubMedGoogle Scholar
  3. Bouche N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610CrossRefPubMedGoogle Scholar
  4. Braam J, Sistrunk ML, Polisensky DH, Xu W, Purugganan MM, Antosiewicz DM, Campbell P, Johnson KA (1997) Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta 203(Suppl):S35–S41CrossRefPubMedGoogle Scholar
  5. Brenner ED, Martinez-Barboza N, Clark AP, Liang QS, Stevenson DW, Coruzzi GM (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiol 124:1615–1624CrossRefPubMedGoogle Scholar
  6. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082PubMedGoogle Scholar
  7. Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr Opin Plant Biol 4:247–253CrossRefPubMedGoogle Scholar
  8. Davenport R (2002) Glutamate receptors in plants. Ann Bot (Lond) 90:549–557CrossRefGoogle Scholar
  9. Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514CrossRefPubMedGoogle Scholar
  10. Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810CrossRefPubMedGoogle Scholar
  11. Elzenga JT, Van Volkenburgh E (1997) Kinetics of Ca(2+)- and ATP-dependent, voltage-controlled anion conductance in the plasma membrane of mesophyll cells of Pisum sativum. Planta 201:415–423CrossRefPubMedGoogle Scholar
  12. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333CrossRefPubMedGoogle Scholar
  13. Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6872–6877CrossRefPubMedGoogle Scholar
  14. Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84CrossRefPubMedGoogle Scholar
  15. Knight H, Knight MR (1995) Recombinant aequorin methods for intracellular calcium measurement in plants. Methods Cell Biol 49:201–216PubMedGoogle Scholar
  16. Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503CrossRefPubMedGoogle Scholar
  17. Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292:1486–1487CrossRefGoogle Scholar
  18. Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126CrossRefPubMedGoogle Scholar
  19. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101CrossRefPubMedGoogle Scholar
  20. Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675CrossRefPubMedGoogle Scholar
  21. Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970CrossRefPubMedGoogle Scholar
  22. Tazawa M, Kikuyama M (2003) Is Ca2+ release from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol 44:518–526CrossRefPubMedGoogle Scholar
  23. White PJ, Biskup B, Elzenga JTM, Homann U, Thiel G, Wissing F, Maathuis FJM (1999) Advanced patch-clamp techniques and single-channel analysis. J Exp Bot 50:1037–1054CrossRefGoogle Scholar
  24. White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta 1564:299–309PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Oliver Meyerhoff
    • 1
  • Katharina Müller
    • 1
  • M. Rob G. Roelfsema
    • 1
  • Andreas Latz
    • 1
  • Benoit Lacombe
    • 2
  • Rainer Hedrich
    • 1
  • Petra Dietrich
    • 3
  • Dirk Becker
    • 1
    Email author
  1. 1.Molecular Plant Physiology and BiophysicsUniversity of WuerzburgWuerzburgGermany
  2. 2.Biochimie et Physiologie Moleculaires des Plantes, UMR 5004Agro-M/CNRS/INRA/UM2France
  3. 3.Institut für Molekulare PflanzenphysiologieUniversity of ErlangenErlangenGermany

Personalised recommendations