Advertisement

Planta

, Volume 222, Issue 2, pp 258–268 | Cite as

Aquaporins in poplar: What a difference a symbiont makes!

  • Žaklina Marjanović
  • Norbert Uehlein
  • Ralf Kaldenhoff
  • Janusz J. Zwiazek
  • Michael Weiß
  • Rüdiger Hampp
  • Uwe NehlsEmail author
Original Article

Abstract

The formation of ectomycorrhizas, a tight association between fine roots of trees and certain soil fungi, improves plant nutrition in a nutrient-limited environment and may increase plant survival under water stress conditions. To investigate the impact of mycorrhiza formation on plant water uptake, seven genes coding for putative water channel proteins (aquaporins) were isolated from a poplar ectomycorrhizal cDNA library. Four out of the seven genes were preferentially expressed in roots. Mycorrhiza formation resulted in an increased transcript level for three of these genes, two of which are the most prominently expressed aquaporins in roots. When expressed in Xenopus laevis oocytes, the corresponding proteins of both genes were able to transport water. Together, these data indicate, that the water transport capacity of the plasma membrane of root cells is strongly increased in mycorrhized plants. Measurements of the hydraulic conductance of intact root systems revealed an increased water transport capacity of mycorrhized poplar roots. These data, however, also indicate that changes in the properties of the plasma membrane as well as those of the apoplast are responsible for the increased root hydraulic conductance in ectomycorrhizal symbiosis.

Keywords

Ectomycorrhiza Water transport Aquaporin Root hydraulic conductance Poplar phylogeny 

Abbreviations

EM

Ectomycorrhiza

MIP

Membrane intrinsic protein

PIP

Plasma membrane intrinsic protein

TIP

Tonoplast intrinsic protein

NIP

Nodulin-intrinsic protein

SIP

Small intrinsic protein

Pf

Osmotic permeability coefficient

Kr

Hydraulic conductance

Lp

Hydraulic conductivity

Ea

Activation energy

PCR

Polymerase chain reaction

Notes

Acknowledgements

We are indebted to Margret Ecke, Tawfik Muhsin and Andrea Bock for excellent technical assistance and to Dr. Nina Grunze for critical reading of the manuscript. This work was financed by the Deutsche Forschungsgemeinschaft (Ha 970/10-1 and Ne 332/7-1) as part of the focus program SSP1084 ”Molekulare Grundlagen der Mykorrhiza Symbiose”.

References

  1. Altschul S, Thomas L, Alejandro A, Jinghui Z, Zheng Z, Webb M, David J (1997) Gapped BLAST and PSI-Blast: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894Google Scholar
  3. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570CrossRefPubMedGoogle Scholar
  4. Boyle CD, Hellenbrand KE (1991) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69:1764–1771Google Scholar
  5. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215CrossRefPubMedGoogle Scholar
  6. Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81CrossRefPubMedGoogle Scholar
  7. Goss RW (1960) Mycorrhizae of ponderosa pine in Nebraska grassland soils. Res Bull 192:35–47Google Scholar
  8. Grunze N, Willmann M, Nehls U (2004) Impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots. New Phytol 164:147–156CrossRefGoogle Scholar
  9. Guerrero FD, Jones JT, Mullet JE (1990) Turgor-responsible gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol 15:11–26CrossRefPubMedGoogle Scholar
  10. Hampp R, Ecke M, Schaeffer C, Wallenda T, Wingler A, Kottke I, Sundberg B (1996) Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indolacetic acid-biosynthesis genes. Trees 11:59–64CrossRefGoogle Scholar
  11. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688PubMedGoogle Scholar
  12. Johansson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysee L, Weig A, Kjellbom P (2001) The complete set of genes encoding major intrisic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinstic proteins in plants. Plant Physiol 126:1358–1369CrossRefPubMedGoogle Scholar
  13. Kaldenhoff R, Eckert M (1999) Features and function of plant aquaporins. J Photochem Photobiol 52:1–6CrossRefGoogle Scholar
  14. Kaldenhoff R, Kolling A, Richter G (1993) A novel blue light- and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant Mol Biol 23:1187–1198CrossRefPubMedGoogle Scholar
  15. Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasmalemma aquaporins for watertransport in Arabidopsis thaliana. Plant J 14:121–128CrossRefPubMedGoogle Scholar
  16. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefPubMedGoogle Scholar
  17. Landhäusser SM, Muhsin TM, Zwiazek J (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689CrossRefGoogle Scholar
  18. Lehto T (1992) Mycorrhizas and drought resistance of Picea sitchensis (Bong) Carr I. In condition of nutrient deficiency. New Phytol 122:661–668Google Scholar
  19. Loewe A, Einig W, Shi L, Dizengremel P, Hampp R (2000) Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145:565–574CrossRefGoogle Scholar
  20. Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138CrossRefPubMedGoogle Scholar
  21. Morillon R, Lassalles JP (2002) Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta 214:392–399CrossRefPubMedGoogle Scholar
  22. Morte A, Diaz GR, P. Alarcon JJ, Sanchez-Blanco MJ (2001) Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Physiol Plant 44:263–267Google Scholar
  23. Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739CrossRefPubMedGoogle Scholar
  24. Muhsin TM, Zwiazek JJ (2002) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158CrossRefGoogle Scholar
  25. Nehls U, Bock A, Ecke M, Hampp R (2001) Differential expression of hexose-regulated fungal genes within Amanita muscaria Populus tremula x tremuloides ectomycorrhizas. New Phytol 150:583–589CrossRefGoogle Scholar
  26. Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95Google Scholar
  27. Phillips AL, Huttly AK (1994) Cloning of two giberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: Expression of the tonoplast water channel, TIP, is increased by GA3. Plant Mol Biol 24:603–615CrossRefPubMedGoogle Scholar
  28. Ramahaleo T, Morillon R, Alexandre J, Lassalles JP (1999) Osmotic water permeability of isolated protoplasts. Modifications during development. Plant Physiol 25:885–896CrossRefGoogle Scholar
  29. Rieger M, Litvin P (1999) Root system hydraulic conductivity in species with contrasting root anatomy. J Exp Bot 50:201–209CrossRefGoogle Scholar
  30. Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  31. Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876CrossRefPubMedGoogle Scholar
  32. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, vol 2. Academic, LondonGoogle Scholar
  33. Steudle E, Peterson CA (1998) How does water get through roots. J Exp Bot 49:775–788CrossRefGoogle Scholar
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acids Res 24:4876–4882CrossRefGoogle Scholar
  35. Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765CrossRefGoogle Scholar
  36. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737CrossRefPubMedGoogle Scholar
  37. Wan X, Zwiazek JJ (1999) Mercuric chloride effects on root water transport in aspen (Populus tremuloides) seedlings. Plant Physiol 121:939–946CrossRefPubMedGoogle Scholar
  38. Weig AR, Jakob C (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Let 481:293–298CrossRefGoogle Scholar
  39. Wright DP, Scholes JD, Read DJ, Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell Env 23:39–49CrossRefGoogle Scholar
  40. Yamaguchi J, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsible to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224Google Scholar
  41. Zhang R, Verkman AS (1991) Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am J Physiol 260:C26–C34PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Žaklina Marjanović
    • 1
  • Norbert Uehlein
    • 2
  • Ralf Kaldenhoff
    • 2
  • Janusz J. Zwiazek
    • 3
  • Michael Weiß
    • 4
  • Rüdiger Hampp
    • 1
  • Uwe Nehls
    • 1
    Email author
  1. 1.Physiologische Ökologie der PflanzenEberhard-Karls-UniversitätTubingenGermany
  2. 2.Institut für Botanik, Angewandte PflanzenwissenschaftenUniversität DarmstadtDarmstadtGermany
  3. 3.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  4. 4.Spezielle Botanik und MykologieEberhard-Karls-UniversitätTubingenGermany

Personalised recommendations