Advertisement

Planta

, Volume 223, Issue 3, pp 591–603 | Cite as

Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp

  • Sophie Mantelin
  • Guilhem Desbrosses
  • Marièle Larcher
  • Timothy J. Tranbarger
  • Jean-Claude Cleyet-Marel
  • Bruno TouraineEmail author
Original Article

Abstract

Both root architecture and plant N nutrition are altered by inoculation with the plant growth-promoting rhizobacteria (PGPR) Phyllobacterium strain STM196. It is known that NO 3 and N metabolites can act as regulatory signals on root development and N transporters. In this study, we investigate the possible interrelated effects on root development and N transport. We show that the inhibition of Arabidopsis lateral root growth by high external NO 3 is overridden by Phyllobacterium inoculation. However, the leaf NO 3 pool remained unchanged in inoculated plants. By contrast, the Gln root pool was reduced in inoculated plants. Unexpectedly, NO 3 influx and the expression levels of AtNRT1.1 and AtNRT2.1 genes coding for root NO 3 transporters were also decreased after 8 days of Phyllobacterium inoculation. Although the mechanisms by which PGPR exert their positive effects remain unknown, our data show that they can optimize plant development independently from N supply, thus alleviating the regulatory mechanisms that operate in axenic conditions. In addition, we found that Phyllobacterium sp. elicited a very strong induction of AtNRT2.5 and AtNRT2.6, both genes preferentially expressed in the shoots whose functions are unknown.

Keywords

Arabidopsis N transporter N uptake Nitrate availability Plant growth-promoting rhizobia—Root development 

Abbreviations

AMT

Ammonium transporter

Cfu

Colony forming units

NRT

Nitrate transporter

PGPR

Plant growth-promoting rhizobacteria

Notes

Acknowledgments

This work was supported by grants from the Centre Technique Interprofessionnel des Oléagineux Métropolitains (CETIOM) and the Institut National de la Recherche Agronomique (INRA) to S. Mantelin, from CETIOM and the Région Languedoc-Roussillon to M. Larcher, and from the INRA Departments “Santé des Plantes et Environnement” and “Biologie Végétale” to T.J. Tranbarger. Dr Patricia Nazoa (UMII/INRA, Montpellier, France) is acknowledged for assistance in experiments using the pAtNRT2.1::GUS Arabidopsis transgenic plants. Pascal Tillard (INRA, Montpellier, France) is acknowledged for 15 N assays. We thank Dr Georg Leggewie (MPI for Molecular Plant Physiology, Golm, Germany) for helping us in the design of the AtAMTs and AtNRTs primer sequences for the real-time RT-PCR analysis. We are grateful to Dr Philippe Joudrier and Dr Rémi Alary (INRA, Montpellier, France) for making their real-time PCR equipment available to us.

References

  1. Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066CrossRefGoogle Scholar
  2. Aslam M, Travis RL, Huffaker RC (1992) Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol 99:1124–1133PubMedCrossRefGoogle Scholar
  3. Bashan Y, Singh M, Levanony H (1989) Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Can J Bot 67:2429–2433CrossRefGoogle Scholar
  4. Bertrand H, Nalin R, Bally R, Cleyet-Marel J-C (2001) Isolation and identitfication of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156CrossRefGoogle Scholar
  5. Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel J-C (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236PubMedCrossRefGoogle Scholar
  6. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedCrossRefGoogle Scholar
  7. Bremner E, Jenzen H, Gilbertson C (1995) Evidence against associative N2 fixation as a significant source of N in long-term wheat plots. Plant Soil 175:13–19CrossRefGoogle Scholar
  8. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271PubMedCrossRefGoogle Scholar
  9. Clarkson DT, Gojon A, Saker LR, Wiersema PK, Puvres JV, Tillard P, Arnold GM, Paans AJM, Vaalburg W, Stulen I (1996) Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of 13 N and 15 N tracing. Plant Cell Environ 19:859–868CrossRefGoogle Scholar
  10. Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379PubMedCrossRefGoogle Scholar
  11. Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224PubMedCrossRefGoogle Scholar
  12. Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224PubMedCrossRefGoogle Scholar
  13. Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68CrossRefGoogle Scholar
  14. Freixes S, Thibaud M-C, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Environ 25:1357–1366CrossRefGoogle Scholar
  15. Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat SR, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864PubMedCrossRefGoogle Scholar
  16. Henricksen A, Semer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518CrossRefGoogle Scholar
  17. Huang NC, Chiang CS, Crawford NM, Tsay Y-F (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191PubMedCrossRefGoogle Scholar
  18. Huang NC, Liu K-H, Lo H-J, Tsay Y-F (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392PubMedCrossRefGoogle Scholar
  19. Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7PubMedGoogle Scholar
  20. Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel J-C (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125CrossRefGoogle Scholar
  21. Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519PubMedCrossRefGoogle Scholar
  22. López-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287PubMedCrossRefGoogle Scholar
  23. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34PubMedCrossRefGoogle Scholar
  24. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54CrossRefGoogle Scholar
  25. Muller B, Touraine B (1992) Inhibition of NO3 uptake by various phloem-translocated amino acids in soybean seedlings. J Exp Bot 43:617–623CrossRefGoogle Scholar
  26. Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo D, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703PubMedCrossRefGoogle Scholar
  27. Ninnemann O, Jauniaux J-C, Frommer WB (1994) Identification of a high affinity NH4+ transporter from plants. EMBO J 13:3464–3471PubMedGoogle Scholar
  28. Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317PubMedCrossRefGoogle Scholar
  29. Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis Structure and gene expression. Plant Physiol 129:886–896PubMedCrossRefGoogle Scholar
  30. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedCrossRefGoogle Scholar
  31. Persello-Cartieaux F, David P, Sarrobert C, Thibaud M-C, Achouak W, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198PubMedCrossRefGoogle Scholar
  32. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  33. Robinson D (1994) The response of plants to non-uniform supplies of nutrient. New Phytol 127:635–674CrossRefGoogle Scholar
  34. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  35. Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222CrossRefGoogle Scholar
  36. Scheible W-R, Gonzalez-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E-D, Caboche M, Stitt M (1997b) Tobacco mutants with a decreased number of functional nia-genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203:304–319PubMedCrossRefGoogle Scholar
  37. Scheible W-R, Lauerer M, Schulze E-D, Caboche M, Stitt M (1997a) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691CrossRefGoogle Scholar
  38. Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662PubMedCrossRefGoogle Scholar
  39. Sohlenkamp C, Shelden MC, Howitt SM, Udvardi MK (2000) Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett 467:273–278PubMedCrossRefGoogle Scholar
  40. Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788–1796PubMedCrossRefGoogle Scholar
  41. Touraine B, Daniel-Vedele F, Forde BG (2001) Nitrate uptake and its regulation. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. INRA-Editions and Springer-Verlag, Berlin-Heidelberg, pp 1–36Google Scholar
  42. Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Doumas P, Touraine B (2003) Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ 26:459–469CrossRefGoogle Scholar
  43. Tsay Y-F, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713PubMedCrossRefGoogle Scholar
  44. Vande Broek A, Michiels J, Van Gool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol Plant-Microbe Interact 6:592–600Google Scholar
  45. Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM (2000) Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol 123:307–318PubMedCrossRefGoogle Scholar
  46. von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261CrossRefGoogle Scholar
  47. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409PubMedCrossRefGoogle Scholar
  48. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534PubMedCrossRefGoogle Scholar
  49. Zhuo D, Okamoto M, Vidmar JJ, Glass ADM (1999) Regulation of a putative high-affinity nitrate transporter AtNrt2;1 in roots of Arabidopsis thaliana. Plant J 17:563–568PubMedCrossRefGoogle Scholar
  50. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sophie Mantelin
    • 1
  • Guilhem Desbrosses
    • 1
  • Marièle Larcher
    • 1
    • 2
  • Timothy J. Tranbarger
    • 1
    • 3
  • Jean-Claude Cleyet-Marel
    • 1
  • Bruno Touraine
    • 1
    Email author
  1. 1.Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherches (UMR) 113 (Université Montpellier II, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Agro-M), Institut National de la Recherche Agronomique (Unité Sous Contrat 1042)Université Montpellier II, CC 002, Place Eugène BataillonMontpellier cedex 05France
  2. 2.Observatoire Océanologique de BanyulsBanyuls sur Mer CedexFrance
  3. 3.Centre de Recherche CIRAD, IRD de MontpellierLaboratoire GeneTropMontpellierFrance

Personalised recommendations