Planta

, Volume 223, Issue 2, pp 369–373 | Cite as

Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton

  • Katharina Vogelsang
  • Bernd Schneider
  • Maike Petersen
Original Article

Abstract

Cell suspension cultures of the hornwort Anthoceros agrestis Paton (Anthocerotaceae) were cultivated and characterized in CB-media containing 2 and 4% sucrose. The suspension cells accumulated rosmarinic acid up to 5.1% of the cell dry weight as well as caffeoyl-4′-hydroxyphenyllactate. Moreover, a more hydrophilic compound was detected which was isolated and identified as rosmarinic acid 3′-O-β-D-glucoside, a new rosmarinic acid derivative. This new rosmarinic acid derivative was found up to 1.0% of the cell dry weight in suspension cells of A. agrestis.

Keywords

Anthoceros agrestis Paton (Anthocerotaceae) Hornworts Rosmarinic acid Rosmarinic acid 3′-O-β-glucoside Suspension cultures 

References

  1. Binding H, Mordhorst G (1991) Gametophyte regeneration and apospory from archegoniate protoplasts under conditions devised for higher plants. Bot Acta 104:330–335Google Scholar
  2. Häusler E, Petersen M, Alfermann AW (1992) Rosmarinsäure in Blechnum-Spezies. In: Haschke HP, Schnarrenberger C (eds) Botanikertagung 1992, Berlin. Akademie Verlag, Berlin, pp. 1– 507Google Scholar
  3. Harborne JB (1966) Caffeic acid ester distribution in higher plants. Z Naturforsch 21b:604–605Google Scholar
  4. Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L and other Apiaceae. J Agric Food Chem 53:4367–4372PubMedCrossRefGoogle Scholar
  5. Mendez J, Sanz-Cabanilles F (1979) Cinnamic acid esters in Anthoceros species. Phytochemistry 18:1409CrossRefGoogle Scholar
  6. Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172CrossRefGoogle Scholar
  7. Petersen M (2003) Cinnamic acid 4-hydroxylase from cell cultures of the hornwort Anthoceros agrestis. Planta 217:96–101PubMedGoogle Scholar
  8. Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501–504Google Scholar
  9. Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei. Planta 189:10–14CrossRefGoogle Scholar
  10. Petersen M, Metzger JW (1993) Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem Anal 4:131–134CrossRefGoogle Scholar
  11. Petersen M, Simmonds MSJ (2003) Molecules of interest: Rosmarinic acid. Phytochemistry 62:121–125PubMedCrossRefGoogle Scholar
  12. Satake T, Kamiya K, Saiki Y, Hama T, Fujimoto Y, Kitanaka S, Kimura Y, Uzawa J, Endang H, Umar M (1999) Studies on the constituents of fruits of Helicteres isora L. Chem Pharm Bull 47:1444–1447Google Scholar
  13. Takeda R, Hasegawa J, Sinozaki K (1990a) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, Anthocerotae (hornworts). Tetrahedron Lett 31:4159–4162CrossRefGoogle Scholar
  14. Takeda R, Hasegawa J, Sinozaki K (1990b) Phenolic compounds from Anthocerotae. In: Zinsmeister HD, Mues R (eds) Bryophytes their chemistry and chemical taxonomy. Oxford Science Publications, Oxford, pp 201–207Google Scholar
  15. Trennhäuser F (1992) Phytochemische Untersuchung und in vitro Kultur ausgewählter Vertreter der Anthocerotopsida.University of Saarbrücken, Germany, PhD thesisGoogle Scholar
  16. Trennheuser F, Burkhard G, Becker H (1994) Anthocerodiazonin, an alkaloid from Anthoceros agrestis. Phytochemistry 37:899–903CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Katharina Vogelsang
    • 1
  • Bernd Schneider
    • 2
  • Maike Petersen
    • 1
  1. 1.Institut für Pharmazeutische BiologiePhilipps-Universität MarburgMarburgGermany
  2. 2.Max-Planck-Institut für Chemische ÖkologieBeutenberg CampusJenaGermany

Personalised recommendations