Advertisement

Planta

, 223:69 | Cite as

Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress

  • Tamar Schor-Fumbarov
  • Peter B. Goldsbrough
  • Zach Adam
  • Elisha Tel-Or
Original Article

Abstract

A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd+2, Cu+2, Zn+2 and Ni+2 to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd2+ and Ni2+ induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

Keywords

Azolla Heavy metals Metallothioneins Stress 

Abbreviations

MT

Metallothionein

IRRI

International rice research institute

SEM

Scanning electron microscopy

ICP

Inductive coupled plasma

RT-PCR

Reverse transcription polymerase chain reaction

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Binz PA, Kägi JHR (1999) Metallothionein: Molecular evolution and classification. In: Klaassen C (ed) Metallothionein IV. Birkhäuser, pp7–13Google Scholar
  3. Cobbett CS, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–183CrossRefPubMedGoogle Scholar
  4. De Miranda JR, Thomas MA, Thurman DA, Tomsett AB (1990) Metallothionein genes from the flowering plants Mimulus guttatus. FEBS Lett 260:277–280CrossRefPubMedGoogle Scholar
  5. Foley RC, Singh KB (1994) Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol Biol 26:435–444CrossRefPubMedGoogle Scholar
  6. Foley RC, Liang ZM, Singh KB (1997) Analysis of type 1 metallothionein cDNAs in Vicia faba. Plant Mol Biol 33:583–591CrossRefPubMedGoogle Scholar
  7. Forni C, Tel-Or E, Bar E, Grilli Caiola M (1991) Effects of antibiotic treatments on Azolla-Anabaena and Arthrobacter. Plant Soil 137:151–155CrossRefGoogle Scholar
  8. Giordani T, Natali L, Maserti BE, Taddei S, Cavallini A (2000) Characterization and expression of DNA sequences encoding putative Type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol 123:1571–1581CrossRefPubMedGoogle Scholar
  9. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951PubMedGoogle Scholar
  10. Hsieh HM, Liu WK, Chang A, Huang PC (1996) RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Mol Biol 32:525–529CrossRefPubMedGoogle Scholar
  11. Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389CrossRefPubMedGoogle Scholar
  12. Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, pp 29–55Google Scholar
  13. Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N (1991) Isolation of gene for a metallothionein protein from soybean. Plant Cell Physiol 32:913–916Google Scholar
  14. Lumpkin TA, Pluncknett DL (1980) Azolla: botany, physiology and use as a green manure. Economic Bot 34:111–153Google Scholar
  15. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553–560CrossRefPubMedGoogle Scholar
  16. Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneina 1 and 2 from Arabidopsis thaliana. Plant Physiol 113:1293–1301CrossRefPubMedGoogle Scholar
  17. Oren-Benaroya R, Zamski E, Tel-Or E (2004) L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:97–102CrossRefPubMedGoogle Scholar
  18. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothionein. Cell Biochem Biophys 31:19–48CrossRefPubMedGoogle Scholar
  19. Reimer P, Duthie HC (1993) Concentrations of zinc and chromium in aquatic macrophytes from the Sudbury and Muskoka regions of Ontario, Canada. Environ Pollut 79:261–265CrossRefPubMedGoogle Scholar
  20. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10PubMedGoogle Scholar
  21. Salt DE, Benhamou N, Leszczyniecka M, Raskin I, Chen I (1999) A possible role for rhizobacteria in water treatment by plant roots. Inter J Phytorem 1:67–79CrossRefGoogle Scholar
  22. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chen I, Raskin I (1995) Phytoremediation:a novel strategy for removal of toxic metals from the environment using plants. Biotechnology 13:468–474CrossRefPubMedGoogle Scholar
  23. Sela M, Fritz E, Huttermann A, Tel-Or E (1990) Studies on cadmium localization in the water fern Azolla. Physiol Plant 79:547–553CrossRefGoogle Scholar
  24. Sela M, Garty J, Tel-Or E (1989) The accumulation and the effect of heavy-metals on the water fern Azolla filiculoides. New Phytol 112:7–12CrossRefGoogle Scholar
  25. Sela M, Tel-Or E, Fritz E, Huttermann A (1988) Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol 88:30–36PubMedCrossRefGoogle Scholar
  26. Shi J, Lindsay WP, Huckle JW, Morby AP, Robinson NJ (1992) Cyanobacterial metallothionein gene expressed in Escherichia coli: metal-binding properties of the expressed protein. FEBS Lett 303:159–163CrossRefPubMedGoogle Scholar
  27. Tel-Or E, Sela M, Ravid S (1997) Biofiltration of heavy metals by the aquatic fern Azolla. In: Rosen D, Tel-Or E, Hadar Y, Chen Y (eds) Modern agriculture and the environment. Kluwer Academic Publishers, pp 431–442Google Scholar
  28. Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ (1991) Expression of pea gene PsMT A in E.coli: metal-binding properties of expressed protein. FEBS Lett 292:48–52CrossRefPubMedGoogle Scholar
  29. Watanable I, Espinas CR, Berja NS, Alimaguo BV (1977) The utilization of the AzollaAnabena complex as nitrogen fertilizer. Int Rice Res 11:1–5Google Scholar
  30. Zenk MH (1996) Heavy metal detoxification in higher plants. Gene 179:21–30CrossRefPubMedGoogle Scholar
  31. Zhou JM, Goldsbrough PB (1994) Functional homologs of animal and fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884CrossRefPubMedGoogle Scholar
  32. Zhou JM, Goldsbrough PB (1995) Sructure, organization and expression of metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Tamar Schor-Fumbarov
    • 1
  • Peter B. Goldsbrough
    • 2
  • Zach Adam
    • 1
  • Elisha Tel-Or
    • 1
  1. 1.The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Department of Horticulture and Landscape ArchitecturePurdue UniversityIndianaUSA

Personalised recommendations