Planta

, Volume 222, Issue 5, pp 888–898 | Cite as

Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system

  • Martin Ruppert
  • Jörn Woll
  • Anatoli Giritch
  • Ezzat Genady
  • Xueyan Ma
  • Joachim Stöckigt
Original Article

Abstract

Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

Keywords

Acetylajmalan esterase Agrobacterium-mediated viral expression Indole alkaloid biosynthesis Purification and functional expression Rauvolfia cell suspensions 

Abbreviations

GFP

Green fluorescent protein

MSH

2-Mercaptoethanol

PMSF

Phenylmethylsulfonyl fluoride

Notes

Acknowledgements

E. Genady and J. Woll thank the Botschaft der Arabischen Republik Ägypten and the Landesgraduiertenförderung (Rheinland-Pfalz, Germany) for a grant. Dr. G. v. Schumann is acknowledged for excellent assistance in enzyme purification. We also thank Prof. F. Lottspeich, R. Mentele (Martinsried, Germany) for performing partial protein sequencing, Prof. Y. Gleba, Dr. V. Klimyuk (Halle, Germany) and Prof. T. Kutchan (Halle, Germany) for helpful suggestions and linguistic help. This research was supported by Deutsche Forschungsgemeinschaft (Bonn, Bad-Godesberg, Germany), Fonds der Chemischen Industrie (Frankfurt/Main, Germany) and Bundesministerium für Bildung und Wissenschaft (Berlin, Germany).

References

  1. Barleben L, Ma X, Koepke J, Peng G, Michel H, Stöckigt J (2005) Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to a unique diversity of indole alkaloid skeletons. Biochim Biophys Acta 1747:89–92PubMedGoogle Scholar
  2. Bayer A, Ma X, Stöckigt J (2004) Acetyltransfer in natural product biosynthesis—functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem 12:2787–2795CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cummins I, Edwards R (2004) Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant J 39:894–904PubMedCrossRefGoogle Scholar
  5. Dogru E, Warzecha H, Seibel F, Haebel S, Lottspeich F, Stöckigt J (2000) The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the α/β hydrolase super family. Eur J Biochem 267:1397–1406CrossRefPubMedGoogle Scholar
  6. Eckerskorn C, Lottspeich F (1989) Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix. Chromatographia 28:92–94CrossRefGoogle Scholar
  7. Eckerskorn C, Mewes W, Goretzky HC, Lottspeich F (1988) A new siliconized glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem 176:509–519CrossRefPubMedGoogle Scholar
  8. Gao S, von Schumann G, Stöckigt J (2002) A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline. Planta Med 68:906–911CrossRefPubMedGoogle Scholar
  9. Hampp N, Zenk MH (1988) Homogeneous strictosidine synthase from cell suspension cultures of Rauvolfia serpentina. Phytochemistry 27:3811–3815CrossRefGoogle Scholar
  10. Hemscheidt T, Zenk MH (1980) Glucosidases involved in indole alkaloid biosynthesis of Catharanthus cell cultures. FEBS Lett 101:187–191CrossRefGoogle Scholar
  11. Koepke J, Ma X, Fritzsch G, Michel H, Stöckigt J (2005) Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine. Acta Crystallogr Sect D Biol Crystallogr 61:690–693CrossRefGoogle Scholar
  12. Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32:493–506CrossRefPubMedGoogle Scholar
  13. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127CrossRefGoogle Scholar
  14. Ma X, Koepke J, Fritzsch G, Diem R, Kutchan TM, Michel H, Stöckigt J (2004a) Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia – the first member of a novel enzyme family. Biochim Biophys Acta 1702:121–124PubMedGoogle Scholar
  15. Ma X, Koepke J, Bayer A, Linhard V, Fritzsch G, Zhang B, Michel H, Stöckigt J (2004b) Vinorine synthase from Rauvolfia – the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily. Biochim Biophys Acta 1701:129–132PubMedGoogle Scholar
  16. Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583CrossRefPubMedGoogle Scholar
  17. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857CrossRefPubMedGoogle Scholar
  18. Mattern-Dogru E, Ma X, Hartmann J, Decker H, Stöckigt J (2002) Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis. Eur J Biochem 269:2889–2896CrossRefPubMedGoogle Scholar
  19. Polz L, Schübel H, Stöckigt J (1987) Characterization of 2β-(R)-17- 0-acetylajmalan: acetylesterase – a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid ajmaline. Z Naturforsch 42c:333–342Google Scholar
  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  21. Sato F, Hashimoto T, Hachiya A, Tamura K, Choi KB, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372CrossRefPubMedGoogle Scholar
  22. von Schumann G, Gao S, Stöckigt J (2002) Vomilenine reductase—a novel enzyme catalyzing a crucial step in the biosynthesis of the therapeutically applied antiarrhythmic alkaloid ajmaline. Bioorg Med Chem 10:1913–1918CrossRefPubMedGoogle Scholar
  23. Stöckigt J (1995) Biosynthesis in Rauwolfia serpentina—modern aspects of an old medicinal plant. In: Cordell GA (ed) The alkaloids, vol 47. Academic, San Diego, pp 115–172Google Scholar
  24. Treimer JF, Zenk MH (1979) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur J Biochem 101:225–233CrossRefPubMedGoogle Scholar
  25. Vazquez-Flota FA, De Luca V (1998) Jasmonate modulates development- and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry 49:395–402CrossRefPubMedGoogle Scholar
  26. Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7CrossRefPubMedGoogle Scholar
  27. Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101:13957–13962CrossRefPubMedGoogle Scholar
  28. Zenk MH (1995) Chasing the enzymes of alkaloid biosynthesis. In: Golding BT, Griffin RJ, Maskill H (eds) Organic reactivity: Physical and biological aspects. The Royal Society of Chemistry, Newcastle upon Tyne, pp 89–109Google Scholar
  29. Zenk MH, Stöckigt J (1977) Strictosidine (Isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Soc Chem Commun 269:646–648Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Martin Ruppert
    • 1
  • Jörn Woll
    • 1
  • Anatoli Giritch
    • 2
  • Ezzat Genady
    • 1
  • Xueyan Ma
    • 1
  • Joachim Stöckigt
    • 1
  1. 1.Department of Pharmaceutical Biology, Institute of PharmacyJohannes Gutenberg-UniversityMainzGermany
  2. 2.Icon Genetics GmbHBiozentrum HalleHalle/SaaleGermany

Personalised recommendations