Planta

, Volume 222, Issue 5, pp 848–857 | Cite as

Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria

  • Jun-ichiro Horiuchi
  • Balakrishnan Prithiviraj
  • Harsh P. Bais
  • Bruce A. Kimball
  • Jorge M. Vivanco
Original Article

Abstract

Symbiosis between legume species and rhizobia results in the sequestration of atmospheric nitrogen into ammonium, and the early mechanisms involved in this symbiosis have become a model for plant-microbe interactions and thus highly amenable for agricultural applications. The working model for this interaction states that the symbiosis is the outcome of a chemical/molecular dialogue initiated by flavonoids produced by the roots of legumes and released into the soil as exudates, which specifically induce the synthesis of nodulation factors in rhizobia that initiate the nodulation process. Here, we argue that other organisms, such as the soil nematode Caenorhabditis elegans, also mediate the interaction between roots and rhizobia in a positive way, leading to nodulation. We report that C. elegans transfers the rhizobium species Sinorhizobium meliloti to the roots of the legume Medicago truncatula in response to plant-released volatiles that attract the nematode. These findings reveal a biologically-relevant and largely unknown interaction in the rhizosphere that is multitrophic and may control the initiation of the symbiosis.

Keywords

Symbiosis Legume Sinorhizobium meliloti Caenorhabditis elegans Volatiles 

References

  1. Allaire SE, Yates SR, Ernst FF, Gan J (2002) A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils. J Environ Qual 31:1079–1087PubMedCrossRefGoogle Scholar
  2. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32CrossRefPubMedGoogle Scholar
  3. Baldwin JG, Barker KR, Nelson LA (1979) Effect of Meloidogyne incognita on nitrogen fixation in soybean. J Nematol 11:156–161PubMedGoogle Scholar
  4. Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33CrossRefGoogle Scholar
  5. Bargmann CI, Hartweig E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527CrossRefPubMedGoogle Scholar
  6. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228CrossRefPubMedGoogle Scholar
  7. Brenner SJ (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  8. Brown DJF, Robertson WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223–349CrossRefPubMedGoogle Scholar
  9. Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169PubMedGoogle Scholar
  10. Chen HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191PubMedGoogle Scholar
  11. Cipollo JF, Awad AM, Costello CE, Hirschberg CB (2004) srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates. J Biol Chem 279:52893–52903CrossRefPubMedGoogle Scholar
  12. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580CrossRefPubMedGoogle Scholar
  13. De Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hassink J, Bloem J, De Vos JA, Marinissen JCY, Didden WAM, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J Appl Ecol 30:95–106CrossRefGoogle Scholar
  14. Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990a) Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118CrossRefGoogle Scholar
  15. Dicke M, Beek TAV, Posthumus MA, Dom NB, Bokhoven HV, Groot AEDE (1990b) Isolation and identification of volatile kairomone that affects acarine predator–prey interaction. J Chem Ecol 16:381–396CrossRefGoogle Scholar
  16. Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, FLGoogle Scholar
  17. Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation gene in Rhizobium reversed by other compounds present in plants. Nature 324:90–92CrossRefGoogle Scholar
  18. Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, Saillard C, Bove JM (2001) Mycoplasmas, plants, insect vectors: a matrimonial triangle. C R Acad Sci III 324:923–928PubMedGoogle Scholar
  19. Gray S, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566CrossRefPubMedGoogle Scholar
  20. Haung J (1987) Interaction of nematodes with rhizobia. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists Inc., Hyattsville, pp 301–306Google Scholar
  21. Hoflich J, Berninsone P, Gobel C, Gravato-Nobre MJ, Libby BJ, Darby C, Politz SM, Hodgkin J, Hirschberg CB, Baumeister R (2004) Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 279:30440–30448CrossRefPubMedGoogle Scholar
  22. Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533CrossRefPubMedGoogle Scholar
  23. Horiuchi J, Arimura G, Ozawa R, Shimoda T, Takabayashi J, Nishioka T (2003) A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl Entomol Zool 38:109–116CrossRefGoogle Scholar
  24. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237CrossRefPubMedGoogle Scholar
  25. Liu DW, Thomas JH (1994) Regulation of a periodic motor program in C. elegans. J Neurosci 14:1953–1962PubMedGoogle Scholar
  26. Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236CrossRefPubMedGoogle Scholar
  27. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassay with tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Pandya S, Iyer P, Gaitonde V, Parekh T, Desai A (1999) Chemotaxis of Rhizobium sp.S2 towards Cajanus cajan root exudate and its major components. Curr Microbiol 38:205–209PubMedCrossRefGoogle Scholar
  29. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201CrossRefPubMedGoogle Scholar
  30. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedCrossRefGoogle Scholar
  31. Prithiviraj B, Vikram A, Kushalappa AC, Yaylayan V (2004) Volatile metabolite profiling for the discrimination of onion bulbs infested by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii. Europe. J Plant Pathol 110:371–377CrossRefGoogle Scholar
  32. Purchase HF, Nutman PS (1957) Studies on physiology of nodule formation IV. The influence of bacteria numbers in the rhizosphere on nodule initiation. Ann Bot 21:439–454Google Scholar
  33. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737CrossRefPubMedGoogle Scholar
  34. Redak RA, Purcell AH, Lopes JR, Blua MJ, Mizell RF III, Andersen PC (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270CrossRefPubMedGoogle Scholar
  35. Riely BK, Ane JM, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413CrossRefPubMedGoogle Scholar
  36. Roviria HD (1961) Rhizobium numbers in the rhizospheres of red clover and paspalum in relation to soil treatment and the numbers of bacteria and fungi. Aust J Agric Res 12:77–83CrossRefGoogle Scholar
  37. Sabelis MW, van Baalen M, Bakker FM, Bruin J, Drukker B, Egas CJM, Janssen A, Lesna I, Pels B, van Rijn PCJ, Scutareanu P (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VA, Drent RH (eds) Herbivores: between plants and predators. Blackwell Science Ltd, Oxford, pp 109–166Google Scholar
  38. Selby C, McRoberts WC, Hamilton JTG, Harvey BMR (1996) Inhibition of somatic embryo maturation in Sitka spruce (Picea sitchensis [Bong] Carr) by butylated hydroxytoluene, a volatile antioxidant released by parafilm. Plant Cell Rep 16:192–195CrossRefGoogle Scholar
  39. Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58CrossRefPubMedGoogle Scholar
  40. Sulston JE, Hodgkin J (1988) In: Wood WB (ed) Methods in Nematode Caenorhadbitis elegans. Cold Spring Harbor Laboratory Press, Plainview, pp 587–606Google Scholar
  41. Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113CrossRefGoogle Scholar
  42. van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, abd Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  43. Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91:161–169CrossRefPubMedGoogle Scholar
  44. Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174PubMedCrossRefGoogle Scholar
  45. Wasilewska L, Webster JM (1975) Free living nematodes as disease factors of man and his crops. Int J Environ Stud 7:204–210Google Scholar
  46. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479CrossRefPubMedGoogle Scholar
  47. Whitford WG, Freckman DW, Santos PF, Elkins NZ, Parker LW (1982) The role of nematodes in decomposition in desert ecosystems. In: Freckman DW, Wallwork JA (eds) Nematodes in soil ecosystems. University of Texas Press, Austin, pp 98–115Google Scholar
  48. Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6:327–333CrossRefPubMedGoogle Scholar
  49. Yates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37:199–210Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jun-ichiro Horiuchi
    • 1
    • 3
  • Balakrishnan Prithiviraj
    • 1
    • 3
  • Harsh P. Bais
    • 1
    • 3
  • Bruce A. Kimball
    • 2
    • 4
  • Jorge M. Vivanco
    • 1
    • 2
    • 3
  1. 1.Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsUSA
  2. 2.Graduate Degree Program in EcologyColorado State UniversityFort CollinsUSA
  3. 3.Center for Rhizosphere BiologyColorado State UniversityFort CollinsUSA
  4. 4.United States Department of AgricultureWildlife Services, National Wildlife Research CenterFort CollinsUSA

Personalised recommendations