Advertisement

Planta

, Volume 222, Issue 5, pp 769–776 | Cite as

Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate

  • Anna Berim
  • Otmar Spring
  • Jürgen Conrad
  • Matthias Maitrejean
  • Wilhelm Boland
  • Maike Petersen
Original Article

Abstract

The effect of the two synthetic elicitors coronalon and indanoyl-isoleucine and of methyl jasmonate (MeJA) on the accumulation and biosynthesis of lignans by cell suspension cultures of Linum nodiflorum (Linaceae) was investigated. The production of 6-methoxypodophyllotoxin (MPTOX) could be increased more than tenfold, the maximal content reaching up to over 2.5% of the cell dry weight. The highest yield was achieved by administering 50 μM of the synthetic elicitors on the fourth day and extracting the products on the tenth day of the culture period. An additional lignan accumulated in elicitor-treated cultures. Its structure was elucidated by extensive 1D and 2D NMR measurements, revealing its identity as 5′-demethoxy-MPTOX (5′-dMPTOX). Its average content amounted up to over 5% of the cell dry weight. Growth was only slightly affected by the addition of the elicitors. Methyl jasmonate exerted a moderate stimulating effect on the L. nodiflorum cells with MPTOX and 5′-dMPTOX contents going up to 1.4 and 2.1% of the cell dry weight, respectively. The activities of deoxypodophyllotoxin 6-hydroxylase and β-peltatin 6-O-methyltransferase, two enzymes involved in MPTOX biosynthesis, were increased up to 21.9-fold and 14.6-fold, respectively, in the treated cultures.

Keywords

Cell cultures Coronalon Elicitation Linum nodiflorum (Linaceae) 6-Methoxypodophyllotoxin 5′-Demethoxy-6-methoxypodophyllotoxin 

Abbreviations

MPTOX

6-Methoxypodophyllotoxin

5′-dMPTOX

5′-Demethoxy-6-methoxypodophyllotoxin

PTOX

Podophyllotoxin

CR

Coronalon

DOP6H

Deoxypodophyllotoxin 6-hydroxylase

In-Ile

Indanoyl-isoleucine

POMT

β-Peltatin 6-O-methyltransferase

MeJA

Methyl jasmonate

JA

Jasmonate

OPDA

12-oxo-11,15(Z)-phytodienoic acid.

Notes

Acknowledgements

We are thankful to Prof. Dr. A.W. Alfermann (Düsseldorf, Germany) for the suspension cultures of Linum nodiflorum established in his laboratory as well as for a sample of MPTOX. β-Peltatin and β-peltatin-A methylether were kindly donated by Prof. Dr. M. Medarde (Salamanca, Spain). We also thank I. Klaiber (Hohenheim, Germany) for recording MS spectra. The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

  1. Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, Woolley JG (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35CrossRefGoogle Scholar
  2. Baldwin IT, Hamilton W (2000) Jasmonate-induced responses to Nicotiana sylvestris results in fitness costs due to impaired competitive ability for nitrogen. J Chem Ecol 26:915–952CrossRefGoogle Scholar
  3. Birkett MA, Campbell CAM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334CrossRefPubMedGoogle Scholar
  4. Blechert S, Bockelmann C, Füsslein M, von Schrader T, Stelmach B, Niesel U, Weiler EW (1999) Structure-activity analyses reveal the existence of the two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207:470–479CrossRefGoogle Scholar
  5. Botta B, Delle Monache G, Misiti D, Vitali A, Zappia G (2001) Aryltetralin lignans: chemistry, pharmacology and biotransformation. Curr Med Chem 8:1363–1381PubMedGoogle Scholar
  6. Broomhead AJ, Dewick PM (1990) Aryltetralin lignans from Linum flavum and Linum capitatum. Phytochemistry 29:3839–3844CrossRefGoogle Scholar
  7. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381CrossRefPubMedGoogle Scholar
  8. Dittrich H, Kutchan TM, Zenk MH (1992) The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett 309:33–36CrossRefPubMedGoogle Scholar
  9. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847CrossRefPubMedGoogle Scholar
  10. Farmer EE, Ryan CA (1990) Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716PubMedCrossRefGoogle Scholar
  11. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134PubMedCrossRefGoogle Scholar
  12. Fliegmann J, Schüler G, Boland W, Ebel J, Mithöfer A (2003) The role of octadecanoids and functional mimics in soybean defense responses. Biol Chem 384:437–446CrossRefPubMedGoogle Scholar
  13. Fuss E (2003) Lignans in plant cell and organ cultures: An overview. Phytochem Rev 2:307–320CrossRefGoogle Scholar
  14. Gordaliza M, García PA, del Corral M, Castro MA, Gómez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459CrossRefPubMedGoogle Scholar
  15. Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393PubMedCrossRefGoogle Scholar
  16. Haider G, von Schrader T, Füsslein M, Blechert S, Kutchan TM (2000) Structure-activity relationships of synthetic analogs of jasmonic acid and coronatine on induction of benzo[c]phenanthridine alkaloid accumulation in Eschscholzia californica cell cultures. Biol Chem 381:741–748CrossRefPubMedGoogle Scholar
  17. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379CrossRefPubMedGoogle Scholar
  18. Jolad SD, Wiedkopf RM, Cole JR (1977) Cytotoxic agents from Bursera morelensis (Burseraceae): deoxypodophyllotoxin and a new lignan, 5′-desmethoxydeoxypodophyllotoxin. J Pharm Sci 66:892–893PubMedCrossRefGoogle Scholar
  19. Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signalling pathway. Plant Physiol 121:153–162CrossRefPubMedGoogle Scholar
  20. Koda Y, Tajahashi K, Kikuta Y, Greulich F, Toshima H, Ichihara A (1996) Similarities of the biological activities of coronatine and coronafacic acid to those of jasmonic acid. Phytochemistry 41:93–96CrossRefGoogle Scholar
  21. Konuklugil B, Schmidt TJ, Alfermann AW (1999) Accumulation of aryltetralin lactone lignans in cell suspension cultures of Linum nodiflorum. Planta Med 65:587–588PubMedCrossRefGoogle Scholar
  22. Kranz K, Petersen M (2003) β-Peltatin 6-O-methyltransferase from suspension cultures of Linum nodiflorum. Phytochemistry 64:453–458CrossRefPubMedGoogle Scholar
  23. Krumm T, Bandemer K, Boland W (1995) Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid intermediates in the octadecanoid signalling pathway. FEBS Lett 377:523–529CrossRefPubMedGoogle Scholar
  24. Kuhlmann S, Kranz K, Lücking B, Alfermann AW, Petersen M (2002) Aspects of cytotoxic lignan biosynthesis in suspension cultures of Linum nodiflorum. Phytochem Rev 1:37–43CrossRefGoogle Scholar
  25. Kuhn DN, Chappell J, Boudet A, Hahlbrock K (1984) Induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc Natl Acad Sci USA 81:1102–1106PubMedCrossRefGoogle Scholar
  26. Lauchli R, Boland W (2002) Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism. Chem Rec 3:12–21CrossRefGoogle Scholar
  27. Matsuno M, Nagatsu AM, Ogihara Y, Ellis BE, Mizukami H (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224CrossRefPubMedGoogle Scholar
  28. McDoniel PB, Cole JR (1972) Antitumor activity of Bursera schlechtendalii (Burseraceae). Isolation and structure determination of two new lignans. Pharm Sci 61:1992–1994CrossRefGoogle Scholar
  29. Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5CrossRefPubMedGoogle Scholar
  30. Molog GA, Empt U, Kuhlmann S, van Uden W, Pras N, Alfermann AW, Petersen M (2001) Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214:288–294PubMedGoogle Scholar
  31. Müller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90:7490–7494PubMedCrossRefGoogle Scholar
  32. Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142CrossRefPubMedGoogle Scholar
  33. Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2004) Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism. Biotechnol Bioeng 86:809–816CrossRefPubMedGoogle Scholar
  34. Radman R, Saez T, Bucke C, Keshevarz T (2003) Elicitation of plants and microbial systems. Biotechnol Appl Biochem 37:91–102CrossRefPubMedGoogle Scholar
  35. Sakakibara N, Suzuki S, Umezawa T, Shimada M (2003) Biosynthesis of yatein in Anthriscus sylvestris. Org Biomol Chem 1:2474–2485CrossRefPubMedGoogle Scholar
  36. Schüler G, Görls H, Boland W (2001) 6-substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. Eur J Org Chem 9:1663–1668CrossRefGoogle Scholar
  37. Schüler G, Mithöfer A, Baldwin IT, Berger B, Ebel J, Santos JG, Herrmann G, Hölscher D, Kramell R, Kutchan TM, Maucher H, Schneider B, Stenzel I, Wasternack C, Boland W (2004) Coronalon: a powerful tool in plant stress physiology. FEBS Lett 563:17–22CrossRefPubMedGoogle Scholar
  38. Smollny T, Wichers HJ, Kalenberg S, Shahsavari A, Petersen M, Alfermann AW (1998) Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album. Phytochemistry 48:975–979CrossRefGoogle Scholar
  39. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127CrossRefPubMedGoogle Scholar
  40. Suzuki H, Reddy MSS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendes P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220:696–707CrossRefPubMedGoogle Scholar
  41. Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110Google Scholar
  42. Van Uden W, Bouma AS, Bracht Walker JF, Middel O, Wichers HJ, de Waard P, Woerdenbag HJ, Kellogg RM, Pras N (1995) The production of podophyllotoxin and its 5′-methoxy derivative through bioconversion of cyclodextrin-complexed desoxypodophyllotoxin by plant cell cultures. Plant Cell Tiss Org Cult 42:73–79CrossRefGoogle Scholar
  43. Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221PubMedCrossRefGoogle Scholar
  44. Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of the higher plants. FEBS Lett 345:9–13CrossRefPubMedGoogle Scholar
  45. Wichers HJ, Versluis-de Haan GG, Marsman JW, Harkes MP (1991) Podophyllotoxin-related lignans in plants and cell cultures of Linum flavum. Phytochemistry 30:3601–3604CrossRefGoogle Scholar
  46. Wu J, Lin L (2002) Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: Induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 59:51–57CrossRefPubMedGoogle Scholar
  47. Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549CrossRefPubMedGoogle Scholar
  48. Zhang ZP, Krumm T, Baldwin IT (1997) Structural requirements of jasmonates and mimics for nicotine induction in Nicotiana sylvestris. J Chem Ecol 23:2777–2789CrossRefGoogle Scholar
  49. Zhao Z, Xu Y, Qian Z, Tian W, Qian X, Zhong JJ (2004) Novel fluoro- and hydroxyl-containing jasmonate derivatives as highly efficient elicitors in suspension cultures of Taxus chinensis. Bioorg Med Chem Lett 14:4755–4758CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anna Berim
    • 1
  • Otmar Spring
    • 2
  • Jürgen Conrad
    • 3
  • Matthias Maitrejean
    • 4
  • Wilhelm Boland
    • 4
  • Maike Petersen
    • 1
  1. 1.Institut für Pharmazeutische BiologiePhilipps-Universität MarburgMarburgGermany
  2. 2.Institut für BotanikUniversität HohenheimStuttgartGermany
  3. 3.Institut für ChemieUniversität HohenheimStuttgartGermany
  4. 4.Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations