, Volume 222, Issue 4, pp 699–708 | Cite as

Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)?

  • Heidi Tiimonen
  • Tuija Aronen
  • Tapio Laakso
  • Pekka Saranpää
  • Vincent Chiang
  • Tiina Ylioja
  • Heikki Roininen
  • Hely Häggman
Original Article


Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1–PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.


Betula Insect herbivores Lignin modification O-methyltransferase Syringyl/guaiacyl ratio 



Caffeate/5-hydroxyferulate O-methyltransferase





We are grateful for the technical personnel at the Finnish Forest Research Institute (Punkaharju Research Station and Vantaa Research Centre) for their contribution in this work. We thank Dr. Matti Rousi from the Finnish Forest Research Institute, Punkaharju Research Station, for valuable comments on the manuscript. This research was financed by the Finnish Cultural Foundation and TEKES, the National Technology Agency (Projects 40383/01 and 40481/03 to Metla and University of Oulu), Academy of Finland (grant no. 105214 to Hely Häggman) and the Foundation of Heikki and Hilma Honkanen (grant to Heidi Tiimonen).


  1. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294CrossRefPubMedGoogle Scholar
  2. Aronen T, Häggman H (1995) Differences in Agrobacterium infections in silver birch and Scots pine. Eur J Forest Pathol 25:197–213CrossRefGoogle Scholar
  3. Aronen T, Tiimonen H, Tsai C-J, Jokipii S, Chen X, Chiang V, Häggman H (2003) Altered lignin in transgenic silver birch (Betula pendula) expressing PtCOMT gene. In: Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, Spain, pp 149–161Google Scholar
  4. Ayres MP, Clausen TP, MacLean SFJ, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712CrossRefGoogle Scholar
  5. Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197CrossRefGoogle Scholar
  6. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  7. Bugos RC, Chiang VLC, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215PubMedCrossRefGoogle Scholar
  8. Campbell FT, Asante-Owusu R (2001) GE trees: proceed only with caution. In: Strauss SH, Bradshaw HDT (eds) International symposium on ecological and societal aspects of transgenic plantations. Columbia River Gorge, USA,
  9. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116Google Scholar
  10. Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in acid detergent fibre lignins of beech (Fagus sylvatica L.) during the growth phase. Plant Cell Environ 25:469–478CrossRefGoogle Scholar
  11. Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 10:143–144Google Scholar
  12. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989CrossRefPubMedGoogle Scholar
  13. Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464CrossRefPubMedGoogle Scholar
  14. Haapanen M, Mikola J (2004) Metsänjalostus 2050—Pitkän aikavälin metsänjalostusohjelma. Forest Tree Breeding 2050. Finland’s long-term tree breeding program. Finnish Forest Research Institute, p 61Google Scholar
  15. Haukioja E (2003) Putting the insect into the birch-insect interaction. Review. Oecologia 136:161–168CrossRefPubMedGoogle Scholar
  16. He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43:2240–2251CrossRefGoogle Scholar
  17. Higuchi T (1985) Biosynthesis and biodegradation of wood components. Academic, New YorkGoogle Scholar
  18. Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in trangenic trees. Nat Biotechnol 17:808–812CrossRefPubMedGoogle Scholar
  19. James RR, Difazio SP, Brunner AM, Strauss SH (1998) Environmental effects of genetically engineered woody biomass crops. Biomass Bioenergy 14:403–414CrossRefGoogle Scholar
  20. Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 315–346Google Scholar
  21. Jung H-JG, Ni W, Chapple CCS, Meyer K (1999) Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J Sci Food Agr 79:922–928CrossRefGoogle Scholar
  22. Keinonen-Mettälä, Pappinen A, von Weissenberg K (1998) Comparisons of the efficiency of some promoters in silver birch (Betula pendula). Plant Cell Rep 17:356–361CrossRefGoogle Scholar
  23. Laitinen M-L, Julkunen-Tiitto R, Yamaji K, Heinonen J, Rousi M (2004) Variation in birch bark secondary chemistry between and within clones: implications for herbivory by hares. Oikos 104:316–326CrossRefGoogle Scholar
  24. Lam TB-T, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607CrossRefPubMedGoogle Scholar
  25. Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13CrossRefGoogle Scholar
  26. Mutikainen P, Walls M, Ovaska J, Keinänen M, Julkunen-Tiitto R, Vapaavuori E (2000) Herbivore resistance in Betula pendula: effect of fertilization, defoliation, and plant genotype. Ecology 81:49–65Google Scholar
  27. Ossipov V, Haukioja E, Ossipova S, Hanhimäki S, Pihlaja K (2001) Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem Syst Ecol 29:223–240CrossRefPubMedGoogle Scholar
  28. Palva T (2000) Functional genomics of birch. In: Paavilainen L (ed) Metsäalan tutkimusohjelma. Vuosikirja 1999. Tammer-Paino Oy, Tampere, FinlandGoogle Scholar
  29. Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570CrossRefPubMedGoogle Scholar
  30. Peltola A (2003) Finnish statistical yearbook of forestry 2003. Finnish Forest Research Institute, VammalaGoogle Scholar
  31. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J, Pollet B, Mila I, Webster AD, Marstorp H, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612CrossRefPubMedGoogle Scholar
  32. Prittinen K, Pusenius J, Koivunoro K, Roininen H (2003a) Genotypic variation in growth and resistance to insect herbivory in silver birch (Betula pendula) seedlings. Oecologia 442:572–577CrossRefGoogle Scholar
  33. Prittinen K, Pusenius J, Koivunoro K, Rousi M, Roininen H (2003b) Mortality in seedlings populations of silver birch: genotypic variation and herbivore effects. Funct Ecol 17:658–663CrossRefGoogle Scholar
  34. Rae AL, Manners JM, Jones RJ, McIntyre CL, Lu D-Y (2001) Antisense suppression of the lignin biosynthetic enzyme, caffeate O-methyltransferase, improves in vitro digestibility of the tropical pasture legume, Stylosanthes humilis. Aust J Plant Physiol 28:289–297Google Scholar
  35. Rolando C, Monties B, Lapierre C (1992) Methods in lignin chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Rousi M, Tahvanainen J, Henttonen H, Herms DA, Uotila I (1997) Clonal variation in susceptibility of white birches (Betula spp.) to mammalian and insect herbivores. Forest Sci 43:396–402Google Scholar
  37. Ryynänen L, Ryynänen M (1986) Propagation of adult curly-birch succeeds with tissue culture. Silva Fenn 20:139–147Google Scholar
  38. Saalas U (1949) Suomen metsähyönteiset sekä muut metsälle vahingolliset ja hyödylliset eläimet. Werner Söderström Osakeyhtiö, Porvoo and HelsinkiGoogle Scholar
  39. Sarkanen KV (1971) Lignins: Occurrence, formation, structure and reaction. Wiley-Interscience, New YorkGoogle Scholar
  40. Sewalt VJH, Beauchemin KA, Rode LM, Acharya S, Baron VS (1997) Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification. Bioresource Technol 61:199–206CrossRefGoogle Scholar
  41. Stafford HA (1988) Proanthocyanidins and the lignin connection. Phytochemistry 27:1–6CrossRefGoogle Scholar
  42. Tikkanen O-P, Rousi M, Ylioja T, Roininen H (2003) No negative correlation between growth and resistance to multiple herbivory in a deciduous tree, Betula pendula. Forest Ecol Manag 177:587–592CrossRefGoogle Scholar
  43. Vailhé MAB, Migné C, Cornu A, Maillot MP, Grenet E, Besle JM (1996) Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J Sci Food Agr 72:385–391CrossRefGoogle Scholar
  44. Valjakka M, Aronen T, Kangasjärvi J, Vapaavuori E, Häggman H (2000) Genetic transformation of silver birch (Betula pendula) by particle bombardment. Tree Physiol 20:607–613PubMedGoogle Scholar
  45. Voipio R, Laakso T (1992) Chemical composition of the above ground biomass of small-sized trees. Folia For 789:1–22Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Heidi Tiimonen
    • 1
  • Tuija Aronen
    • 1
  • Tapio Laakso
    • 2
  • Pekka Saranpää
    • 2
  • Vincent Chiang
    • 3
  • Tiina Ylioja
    • 5
  • Heikki Roininen
    • 2
  • Hely Häggman
    • 4
  1. 1.Finnish Forest Research InstitutePunkaharju Research StationPunkaharjuFinland
  2. 2.Finnish Forest Research InstituteVantaa Research CentreVantaaFinland
  3. 3.Department of Forestry, College of Natural ResourcesNorth Carolina State UniversityRaleighUSA
  4. 4.Department of BiologyUniversity of OuluOuluFinland
  5. 5.Department of Applied BiologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations