, Volume 220, Issue 6, pp 864–874 | Cite as

Targeted site-directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus

  • Gerhard Brücker
  • Franz Mittmann
  • Elmar Hartmann
  • Tilman Lamparter
Original Article


The moss Physcomitrella patens is so far the only plant species in which it is possible for nuclear genes to be modified by homologous recombination at a reasonably efficiency. Here we describe the use of homologous recombination for another moss, Ceratodon purpureus. Our approach is based on the repair of the ptr116 mutant allele. In this mutant, codon 31 of the heme oxygenase gene CpHO1 is mutated to a stop codon. Heme oxygenase is necessary for the conversion of heme to biliverdin, the precursor of the phytochrome chromophore. Thus, in ptr116 the phytochrome-mediated responses of phototropism, chlorophyll accumulation and branching are lost. Protoplast transformation with DNA encoding the wild-type protein resulted in a rescue of 0.8% of regenerated protoplasts. In about half of the analyzed lines, formation of CpHO1 concatemers was observed at the CpHO1 locus, whereas in the other half, the mutant CpHO1 gene was replaced by a single DNA copy. This gene repair led to the exchange of single bases, and thus provides the first demonstration of efficient site-directed mutagenesis in a plant nuclear genome. Our studies also revealed an effective mechanism for gene inactivation in Ceratodon. When wild-type protoplasts were transformed with intact or modified CpHO1 genes, approximately 40% of regenerated protoplasts showed the ptr phenotype.


Ceratodon Gene targeting Heme oxygenase Homologous recombination Photomorphogenesis Phytochrome 



Green fluorescent protein


Gene targeting


Heme oxygenase


Homologous recombination






  1. Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402CrossRefGoogle Scholar
  2. Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778CrossRefPubMedGoogle Scholar
  3. Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474CrossRefPubMedGoogle Scholar
  4. Brücker G, Zeidler M, Kohchi T, Hartmann E, Lamparter T (2000) Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus. Planta 210:529–535CrossRefPubMedGoogle Scholar
  5. Emanuelsson O, Nielsen H, von Heije G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984PubMedGoogle Scholar
  6. Esch H, Lamparter T (1998) Light regulation of phytochrome content in wild-type and aphototropic mutants of the moss Ceratodon purpureus. Photochem Photobiol 67:450–455CrossRefPubMedGoogle Scholar
  7. Felsenstein J (2004) PHYLIP: phylogeny inference package 3.6 (computer program distributed by the author). Department of Genetics, University of Washington, SeattleGoogle Scholar
  8. Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677CrossRefPubMedGoogle Scholar
  9. Hartmann E, Klingenberg B, Bauer L (1983) Phytochrome mediated phototropism in protonemata of the moss Ceratodon purpureus BRID. Photochem Photobiol 38:599–603Google Scholar
  10. Hiwatashi Y, Nishiyama T, Fujita T, Hasebe M (2001) Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens. Plant J 28:105–116CrossRefPubMedGoogle Scholar
  11. Kagawa T, Lamparter T, Hartmann E, Wada M (1997) Phytochrome-mediated branch formation in protonemata of the moss Ceratodon purpureus. J Plant Res 110:363–370Google Scholar
  12. Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184CrossRefPubMedGoogle Scholar
  13. Lamparter T, Esch H, Cove D, Hartmann E (1997) Phytochrome control of phototropism and chlorophyll accumulation in the apical cells of protonemal filaments of wildtype and an aphototropic mutant of the moss Ceratodon purpureus. Plant Cell Physiol 38:51–58PubMedGoogle Scholar
  14. Lamparter T, Hughes J, Hartmann E (1998a) Blue light- and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus. Planta 206:95–102CrossRefPubMedGoogle Scholar
  15. Lamparter T, Brücker G, Esch H, Hughes J, Meister A, Hartmann E (1998b) Somatic hybridisation with aphototropic mutants of the moss Ceratodon purpureus: genome size, phytochrome photoreversibility, tip-cell phototropism and chlorophyll regulation. J Plant Physiol 153:394–400Google Scholar
  16. Lessard P, Decroocq V, Thomas M (1997) Isolation and analysis of mRNA from plant cells: cloning of cDNAs. In: Clark MS (ed) Plant molecular biology: a laboratory manual, 1st edn. Springer, Berlin Heidelberg New York, pp 154–201Google Scholar
  17. McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171CrossRefPubMedGoogle Scholar
  18. Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–348CrossRefPubMedGoogle Scholar
  19. Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–182CrossRefPubMedGoogle Scholar
  20. Rensing SA, Rombauts S, Van de PY, Reski R (2002) Moss transcriptome and beyond. Trends Plant Sci 7:535–538CrossRefPubMedGoogle Scholar
  21. Reski R (1999) Molecular genetics of Physcomitrella. Planta 208:301–309CrossRefGoogle Scholar
  22. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76Google Scholar
  23. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  24. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150CrossRefPubMedGoogle Scholar
  25. Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501CrossRefPubMedGoogle Scholar
  26. Schaefer DG, Zrÿd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206CrossRefPubMedGoogle Scholar
  27. Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373CrossRefPubMedGoogle Scholar
  28. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034CrossRefPubMedGoogle Scholar
  29. Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609Google Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  31. Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszynski C, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Gerhard Brücker
    • 1
  • Franz Mittmann
    • 2
  • Elmar Hartmann
    • 1
  • Tilman Lamparter
    • 1
  1. 1.PflanzenphysiologieFreie Universität BerlinBerlinGermany
  2. 2.PflanzenphysiologieJustus Liebig Universität GiessenGiessenGermany

Personalised recommendations