, Volume 219, Issue 4, pp 561–578 | Cite as

Exploitation of marine algae: biogenic compounds for potential antifouling applications

  • Punyasloke Bhadury
  • Phillip C. WrightEmail author


Marine algae are one of the largest producers of biomass in the marine environment. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. These active metabolites, also known as biogenic compounds, produced by several species of marine macro- and micro-algae, have antibacterial, antialgal, antimacrofouling and antifungal properties, which are effective in the prevention of biofouling, and have other likely uses, e.g. in therapeutics. The isolated substances with potent antifouling activity belong to groups of fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. These biogenic compounds have the potential to be produced commercially using metabolic engineering techniques. Therefore, isolation of biogenic compounds and determination of their structure could provide leads for future development of, for example, environmentally friendly antifouling paints. This paper mainly discusses the successes of such research, and the future applications in the context of understanding the systems biology of micro-algae and cyanobacteria.


Antifouling Biofouling Biogenic compounds Marine algae Metabolic engineering 



Acylated homoserine lactone


Tributyl tin



Punyasloke Bhadury acknowledges the Department for International Development (DFID), Heriot Watt University and the Association of Commonwealth Universities for the provision of a DFID Scholarship. Phillip Wright acknowledges the Engineering and Physical Sciences Research Council for an Advanced Research Fellowship (GR/A11311/01). We thank Professor Thomas K. Wood of The University of Connecticut for helpful advice on furanones.


  1. Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312Google Scholar
  2. Abarzua S, Jakubowski S (1996) Verwendung biogener Wirkstoffe aus dem Cyanobacterium Scytonema hofmanni und de Gemeinen Seestern Asterias rubens als naturliche Antifoulingwirkstoffe. German Patent No. IP Hkl A01N63/02, DE 196 46 324 AlGoogle Scholar
  3. Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465Google Scholar
  4. Abe M, Inoue D, Matsunaga K, Ohizumi Y, Ueda H, Asano T, Murakami M, Sato Y (2002) Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. J Cell Physiol 190:109–116CrossRefPubMedGoogle Scholar
  5. Ali MS, Saleem M, Yamdagni R, Ali MA (2002) Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat Prod Lett 16:407–413CrossRefPubMedGoogle Scholar
  6. Anisul A, DeNys R, Steinberg P (2003) The effects of low surface energy coatings on the settlement and behavioural responses of the cyprid larvae of barnacle Balanus amphitrite Darwin. Biofouling [Suppl] 19:105–110Google Scholar
  7. Armstrong E, Boyd KG, Burgess JG (2000) Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Annu Rev 6:221–241CrossRefPubMedGoogle Scholar
  8. Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40CrossRefGoogle Scholar
  9. Badria FA, Guirguis AN, El-Naggar WA (1997) Antibacterial and antifungal agents from Egyptian marine organisms. Int J Pharm 35:284–287CrossRefGoogle Scholar
  10. Baghi SN, Palod A, Chauhan VS (1990) Algicidal properties of a bloom-forming blue-green alga Oscillatoria spec. J Basic Microbiol 30:21–29Google Scholar
  11. Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1675PubMedGoogle Scholar
  12. Bakus GJ, Targett NM, Schulte B (1986) Chemical ecology of marine organisms: an overview. J Chem Eco 12:951–987Google Scholar
  13. Banker R, Carmeli S (1998) Tenuecyclamides A-D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaformae var tenue. J Nat Prod 61:1248–1251CrossRefPubMedGoogle Scholar
  14. Barahona LF, Rorrer GL (2003) Isolation of halogenated monoterpenes from bioreactor-cultured microplantlets of the macrophytic red algae Ochtodes secundiramea and Portieria hornemannii. J Nat Prod 66:743–751PubMedGoogle Scholar
  15. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587CrossRefPubMedGoogle Scholar
  16. Bernan VS, Greenstein M, Maiese WM (1997) Marine micro-organisms as a source of new natural products. Adv Appl Microbiol 43:57–89PubMedGoogle Scholar
  17. Bernard P, Pesando D (1989) Antibacterial and antifungal activity of extracts from the rhizomes of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Bot Mar 32:85–88Google Scholar
  18. Bhosale SH, Nagle VL, Jagtap TG (2002) Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas. Mar Biotechnol 4:111–118CrossRefPubMedGoogle Scholar
  19. Blanke SR, Yang R (2002) Identification of novel genes essential for bacterial survival during environmental Biofouling. Cited 2002Google Scholar
  20. Bloor S, England RR (1991) Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. Enzyme Microb Tech 13:76–81CrossRefGoogle Scholar
  21. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48CrossRefPubMedGoogle Scholar
  22. Böhm GA, Pfleiderer W, Boger P, Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem 270:8536–8539CrossRefPubMedGoogle Scholar
  23. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA (1991) Tjipanazoles, new antifungal agents from the blue green algae Tolypothrix tjipanasensis. Tetrahedron 47:7739–7750CrossRefGoogle Scholar
  24. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signalling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179CrossRefPubMedGoogle Scholar
  25. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15Google Scholar
  26. Boxall ABA, Comber SD, Conrad AU, Howcroft J, Zaman N (2000) Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. Mar Pollut Bull 40:898–905CrossRefGoogle Scholar
  27. Brõzel VS, Strydom GM, Cloete TEE (1995) A method for the study of de novo protein synthesis in Pseudomonas aeruginosa after attachment. Biofouling 8:195–210Google Scholar
  28. Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32CrossRefPubMedGoogle Scholar
  29. Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Grammo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197–205CrossRefGoogle Scholar
  30. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  31. Burja AM, Dhamwichukorn S, Wright PC (2003) Cyanobacterial postgenomic research and systems biology. Trends Biotechnol 21:504–11CrossRefPubMedGoogle Scholar
  32. Burridge TR, Lavery T, Lam PKS (1995) Effects of tributyltin and formaldehyde on the germination and growth of Phyllospora comosa (Labillardiere) C. Agardh (Phaeophyta: Fucales) Bull Environ Contam Toxicol 55:525–532Google Scholar
  33. Caccamese S, Azzolina R, Furnari G, Cormai M, Grasso S (1981) Antimicrobial and antiviral activities of some marine algae from Eastern Sicily. Bot Mar 14:365–367Google Scholar
  34. Caccamese S, Toscano RM, Furnari G, Coraci M (1985) Antimicrobial activities of red and brown algae from Southern Italy coast. Bot Mar 28:505–507Google Scholar
  35. Callow ME (1996) Ship-fouling: the problem and methods of control. Biodeter Abstr 10:411–421Google Scholar
  36. Callow ME, Callow JE (2002) Marine biofouling: a sticky problem. Biologist 49:4–10Google Scholar
  37. Cannell RJP, Owsianka A, Walker JM (1988) Results of a large-scale screening programme to detect antibacterial activity from fresh water algae. Br Phycol J 23:41–44Google Scholar
  38. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315CrossRefPubMedGoogle Scholar
  39. Carmichael WW, Mahmood NA, Hyde EG (1990) Natural toxins from cyanobacteria (blue-green algae). In: Hall S, Strichartz G (eds) Marine toxins: origin, structure and molecular pharmacology. ACS symposium series, vol 418. American Chemical Society, Washington DC, pp 87–106Google Scholar
  40. Caron DA, Seiburth JMcN (1981) Disruption of the primary fouling sequence on fibre glass-reinforced plastic submerged in the marine environment. Appl Environ Microbiol 41:268–273Google Scholar
  41. Carte BK (1996) Biomedical potential of marine natural products: marine organisms are yielding novel molecules for use in basic research and medical applications. Bioscience 46:271–286Google Scholar
  42. Characklis WG (1981) Fouling biofilm development: a process analysis. Biotech Bioeng 23:1923–1960Google Scholar
  43. Charles SV, Sivalingam PM (1994) Antibacterial activity of the tropical Chlorophyta Ulva reticulata Forsskal. Second Asia–Pacific conference on algal biotechnology, SingaporeGoogle Scholar
  44. Chetsumon A, Umeda F, Maeda I, Yagi K, Mizoguchi T, Miura Y (1998) Broad spectrum and mode of action of an antibiotic produced by Scytonema sp. TISTR 8208 in a seaweed-type bioreactor. Appl Biochem Biotechnol 70–72:249–256Google Scholar
  45. Clare AS (1996) Marine natural product antifoulants: status and potential. Biofouling 9:211–229Google Scholar
  46. Clayton MN, King RJ (1990) Biology of marine plants. Longman Chesire, MelbourneGoogle Scholar
  47. Corpe W (1970) Periphytic marine bacteria and the formation of the microbial films on solid surfaces. In: Colwell R, Morita R (eds) Effect of the ocean environment on microbial activities. University Park Press, New York, pp 397–417Google Scholar
  48. Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140PubMedGoogle Scholar
  49. Costerton JW, Lewandowski Z, Caldwell D, Korber D, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  50. Cuba TR, Blake NJ (1983) The initial development of a marine fouling assemblage on a natural substrate in a subtropical estuary. Bot Mar 26:259–264Google Scholar
  51. Da Gama BA, Pereira RC, Carvalho AGV, Coutinho R, Yoneshigue-Valentin Y (2002) The effects of seaweed secondary metabolites on biofouling. Biofouling 18:13–20CrossRefGoogle Scholar
  52. Dagostino L, Goodman AE, Marshall KC (1991) Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119Google Scholar
  53. Dalton HM, March PE (1998) Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9:252–255CrossRefPubMedGoogle Scholar
  54. Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596CrossRefPubMedGoogle Scholar
  55. Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59:1181–1186PubMedGoogle Scholar
  56. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  57. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94CrossRefPubMedGoogle Scholar
  58. De Mule MCZ, De Caire GZ, De Cano MS, De Halperin DR (1991) Bioactive compounds from Nostoc muscorum (cyanobacteria). Cytobios 66:169–172Google Scholar
  59. de Nys R, Steinberg PD (1999) Role of secondary metabolites from algae and seagrasses in biofouling control. Recent advances in marine biotechnology. Vol III, biofilms, bioadhesion, corrosion, and biofouling. Oxford Press, Delhi, pp 223–244Google Scholar
  60. de Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13:244–248CrossRefPubMedGoogle Scholar
  61. de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabaliesh CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271Google Scholar
  62. de Nys R, Leya T, Maximilien R, Asfar A, Nair PSR, Steinberg PD (1996) The need for standardised broad scale bioassay testing: a case study using the red algae Laurencia rigida. Biofouling 10:213–224Google Scholar
  63. de Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162:79–87Google Scholar
  64. Devi P, Solimabi S, D’Souza L, Sonal S, Kamat SY, Singbal SYS (1997) Screening of some marine plants for activity against marine fouling bacteria. Bot Mar 40:87–91Google Scholar
  65. Dexter SC (1996) Biofouling and biocorrosion. Corros Sci Eng 12:1–7Google Scholar
  66. Dexter AF, Garson MJ, Hemling ME (1993) Isolation of a novel bastadin from the temperate marine sponge Ianthella sp. J Nat Prod 56:782–786Google Scholar
  67. Dhawan BN, Garg HS, Goel AK, Srimal RC, Srivastava MN, Bhakuni S (1993) Bioactivity of marine organisms, part 7: screening of some marine fauna from the Indian coasts. Indian J Exp Biol 31:505–510Google Scholar
  68. Dobretsov SV, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro and macro-fouling. Biofouling 18:217–228CrossRefGoogle Scholar
  69. Dworjanyn SA (2001) Chemically mediated antifouling and the cost of producing secondary metabolites in a red alga. Dissertation, University of New South Wales, SydneyGoogle Scholar
  70. Dworjanyn SA, de Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133:727–736CrossRefGoogle Scholar
  71. Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506PubMedGoogle Scholar
  72. Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR (1996) Involvement of N-acyl-l-homoserine lactone inducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136PubMedGoogle Scholar
  73. Elvers KT, Lappin-Scott HM (2000) Encyclopedia of microbiology. Academic Press, San DiegoGoogle Scholar
  74. Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985CrossRefPubMedGoogle Scholar
  75. Eng-Wilmot DL, McCoy LF, Martin DF (1979) Isolation and synergis of a red tide (Gymnodinium breve) cytolic factor(s) from cultures of Gomphosphaeria aponina. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellate blooms. Elsevier, Amsterdam, pp 355–360Google Scholar
  76. Etahiri S, Bultel-Poncé V, Caux C, Guyot M (2001) New bromoditerpenes from the red alga Sphaerococcus coronopifolius. J Nat Prod 64:1024–1027CrossRefPubMedGoogle Scholar
  77. Evans SM, Birchenough AC, Brancato MS (2000) The TBT ban: out of the frying pan into the fire? Mar Pollut Bull 40:204–211CrossRefGoogle Scholar
  78. Falch B (1996) Was steckt in Cyanobakterien? Pharm Unserer Zeit 25:311–321PubMedGoogle Scholar
  79. Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117PubMedGoogle Scholar
  80. Fischer WS, Oliver LM, Walker WW, Manning CS, Lytle TF (1999) Decreased resistance of eastern oysters (Crassosterea virginica) to a protozoal pathogen (Perkinsus marinus) after sublethal exposure to tributyl tin oxide. Mar Environ Res 47:185–201CrossRefGoogle Scholar
  81. Fletcher RL (1975) Heteroantagonism observed in mixed algal cultures. Nature 253:534–535PubMedGoogle Scholar
  82. Fletcher R (1989) A bioassay technique using the marine fouling green alga Enteromorpha. Int Biodeterior Biodegrad 25:407–422CrossRefGoogle Scholar
  83. Fowler MW, Cresswell RC, Stafford AM (1990) An economic and technical assessment of the use of plant cell cultures for natural product synthesis on an industrial scale. Ciba Found Symp 154:157–170PubMedGoogle Scholar
  84. Franklin MA, Penn SG, Lebrilla CB, Lam TH, Pessah IN, Molinski TF (1996) Bastadin 20 and bastadin O-sulfate esters from Lanthella basta: novel modulators of the Ry1R FKBP12 receptor complex. J Nat Prod 59:1121–1127CrossRefPubMedGoogle Scholar
  85. Frey KM, Oppermann-Sanio FB, Schmidt H, Steinbuchel A (2002) Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl Environ Microbiol 68:3377–3384CrossRefPubMedGoogle Scholar
  86. Fuqua C, Winans SC, Greenberg EP (1997) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275Google Scholar
  87. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104CrossRefPubMedGoogle Scholar
  88. Fusetani N, Hiroto H, Okino T, Tomono Y, Yoshumura E (1996) Antifouling activity of isocyanoterpenoids and related compounds isolated from a marine sponge and nudibranchs. J Nat Toxins 5:249–259Google Scholar
  89. Gerwick WH (1990) Cytotoxic substances from the marine cyanophyte Hormithamnion enteromorphoides Grunow. US Patent number 4, 935, 529, Oregon State University, USAGoogle Scholar
  90. Gerwick WH, Proteau PJ, Nagle DG (1994) Compound exhibiting antiproliferative acitivity against cells. US Patent number 5, 324, 739, Oregon State University, USAGoogle Scholar
  91. Gerwick WH, Cone M, Zeller G (2000) Liposygenase metabolism in prokaryotes. Society of Industrial Microbiology Program and Abstracts, San Diego, CA, pp 100Google Scholar
  92. Gitlitz MH (1981) Recent developments in marine antifouling coatings. J Coatings Technol 53:46–52Google Scholar
  93. Givskov M, de Nys R, Manfield M, Gram L, Maximilien R, Eberl L, Moin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedGoogle Scholar
  94. Glombitza KW, Klapperich K (1985) Antibiotics from algae. XXXIV. Cleavage of the high-molecular-weight methylated phlorotannin fraction from the brown alga Pelvetia canaliculata. Bot Mar 28:139–144Google Scholar
  95. Greer SP, Iken KB, McClintock JB, Amsler CD (2003) Individual and coupled effects of echinoderm extracts and surface hydrophobicity on spore settlement and germination in the brown alga Hincksia irregularis. Biofouling 19:315–326CrossRefPubMedGoogle Scholar
  96. Grinwis GCM, Boonstra A, van den Brandhof EJ, Dormans JAMA, Englesma M, Kuiper RV, van Loveren H, Wester PW, Vaal MA, Vethaak AD, Vos JG (1998) Short-term toxicity of bis (tri-n-butyl tin) oxide in flounder (Platichthys flesus): pathology and immune function. Aquat Toxicol 42:15–36CrossRefGoogle Scholar
  97. Gromov BV, Vepritskiy AA, Titova NN, Namkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J Appl Phycol 3:55–59Google Scholar
  98. Gross EM, Wolk P, Juttner F (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J Phycol 27:686–692Google Scholar
  99. Hai T, Ahlers H, Gorenflo V, Steinbuchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389CrossRefPubMedGoogle Scholar
  100. Hall L, Giddings J, Solomon K, Balcomb R (1999) An ecological risk assessment for the use of Irargol 1051 as an algicide for antifoulant paints. Crit Rev Toxicol 29:367–437PubMedGoogle Scholar
  101. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104CrossRefPubMedGoogle Scholar
  102. Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590PubMedGoogle Scholar
  103. Hashimoto S, Watanabe M, Noda Y, Hayashi T, Kurita Y, Takasu Y, Otsuki A (1998) Concentration and distribution of butyltin compounds in a heavy tanker route in the Strait of Malacca and in Tokyo Bay. Mar Environ Res 45:169–177CrossRefGoogle Scholar
  104. Hattori T, Shizuri Y (1996) A screening method for antifouling substances using spores of the fouling macroalga Ulva conglobata Kjellman. Fish Sci (Tokyo) 62:955–958Google Scholar
  105. Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134CrossRefGoogle Scholar
  106. Hay ME, Steinberg PD (1992) The chemical ecology of plant herbivore interactions in marine versus terrestrial communities In: Rosenthal J, Berenbaum M (eds) Herbivores: their interactions with secondary plant metabolites, vol II. Evolutionary and ecological processes. Academic Press, New York, pp 317–413Google Scholar
  107. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F (1996) Molecular basis of intercellular adhesion in the biofilm forming Staphylococcus epidermis. Mol Microbiol 20:1083–1091PubMedGoogle Scholar
  108. Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermis to a polystyrene surface. Mol Microbiol 24:1013–1024CrossRefPubMedGoogle Scholar
  109. Hellio C, Bourgougnon N, Le Gal Y (2000a) Phenoloxidase (E.C. from Mytilus edulis byssus gland: purification, partial characterization and application for screening products with potential antifouling activities. Biofouling 16:235–244Google Scholar
  110. Hellio C, Bremer G, Pons A, Le Gal Y, Bourgougnon N (2000b) Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany (France). Appl Microbiol Biotechnol 54:543–549CrossRefPubMedGoogle Scholar
  111. Hellio C, De La Broise D, Dufossé L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52:231–247CrossRefPubMedGoogle Scholar
  112. Hellio C, Pascal Berge J, Beaupoil C, Le Gal Y, Bougougnon N (2002) Screening of marine algal extracts for anti-settlement activities against microalgae and maroalgae. Biofouling 18:205–215CrossRefGoogle Scholar
  113. Henschell JR, Cook PA (1990) The development of a marine fouling community in relation to the primary film of microrganisms. Biofouling 2:1–11Google Scholar
  114. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  115. Hirata K, Nakagami H, Takashina J, Mahmud T, Kobayashi M, In Y, Ishida T, Miyamoto K (1996) Novel violet pigment, nostocine A, an extracellular metabolite from the cyanobacterium Nostoc spongiaeforme. Heterocycles 43:1513–1519Google Scholar
  116. Hoffmann D, Hevel JM, Moore RE, Moore BS (2003) Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311:171–180CrossRefPubMedGoogle Scholar
  117. Holmström C, Kjelleberg S (1994) The effect of external biological factors on settlement of marine invertebrate larvae and new antifouling technology. Biofouling 8:147–160Google Scholar
  118. Horiguchi T, Shiraishi H, Shimizu M, Yamazaki S, Morita M (1995) Imposex in Japanese gastropods (Neogastropoda and Mesogastropoda): Effects of tributyltin and triphenyltin from antifouling paints. Mar Poll Bull 31:402–405CrossRefGoogle Scholar
  119. Huang YM, Rorrer GL (2003) Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Biotechnol Prog 19:418–427CrossRefPubMedGoogle Scholar
  120. Hunter JE, Anderson CD (2000) Antifouling paints and the environment. Technical paper. Antifouling discussions IMO/MEPC44, pp 6–13Google Scholar
  121. Iken KB, Baker BJ (2003) Ainigmaptilones, sesquiterpenes from the Antarctic gorgonian coral Ainigmaptilon antarcticus. J Nat Prod 66:888–890PubMedGoogle Scholar
  122. Isensee J, Watermann B, Berger H-D (1994) Emissions of antifouling-biocides into the North Sea—an estimation. Dtsch Hydrogr Z 46:355–365Google Scholar
  123. Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J (1986) Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J Org Chem 51:5300–5306Google Scholar
  124. Jackson S (1991) Microalgae: their status as fouling organisms. Oebalia 17:295–303Google Scholar
  125. Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343CrossRefPubMedGoogle Scholar
  126. Janssen M, Tramper J, Mur LR, Wijffels RH (2002) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  127. Jennings JG, Steinberg PD (1997) Phlorotannins vs. others factors affecting epiphyte abundance on the kelp Ecklonia radiata. Ocealogia 109:461–473CrossRefGoogle Scholar
  128. John A, Griebe V, Nielsen PH (1999) Composition of Pseudomonas putida biofilms: accumulation of protein in the biofilm matrix. Biofouling 14:49–57Google Scholar
  129. Kaebernick M, Dittmann E, Borner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol 68:449–455CrossRefPubMedGoogle Scholar
  130. Katsuoka M, Ogura C, Etoh H, Sakata K (1990) Galactosyl and sulfoquinovosyldiacylglycerols isolated from the brown algae, Undaria pinnatifida and Costaria costata as repellents of blue mussel, Mytilus edulis. Agric Biol Chem 54:3043–3044Google Scholar
  131. Kjelleberg S, Steinberg P, eds (1994) Marine biofouling: problems and solution—executive summary. In: Biofouling: problems and solutions. Proceedings of the international workshop, UNSW, Sydney, Australia, pp 32–38Google Scholar
  132. Kjelleberg S, Steinberg PD (2001a) Defenses against bacterial colonization of marine plants. In: Lindow S (eds) Phyllosphere microbiology. University of Berkeley Press, CA, pp 155–170Google Scholar
  133. Kjelleberg S, Steinberg PD (2001b) Surface warfare in the sea. Microbiol Today 28:134–135Google Scholar
  134. Kjelleberg S, Steinberg PD, Givskov M, Gram L, Manefield M, de Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:85–93Google Scholar
  135. Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68CrossRefPubMedGoogle Scholar
  136. Kleerebezem M, Quadri, LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904CrossRefPubMedGoogle Scholar
  137. Kleinkauf H, von Döhren H (1997) Products of secondary metabolism. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7. VCH, Weinheim, pp 308–309Google Scholar
  138. König GM, Wright AD (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967–970CrossRefPubMedGoogle Scholar
  139. König GM, Wright AD, de Nys R (1999a) Halogenated monoterpenes from Plocamium costatum and their biological activity. J Nat Prod 62:383–385CrossRefPubMedGoogle Scholar
  140. König GM, Wright AD, Linden A (1999b) Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. Phtyochemistry 52:1047–1053CrossRefGoogle Scholar
  141. Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248CrossRefPubMedGoogle Scholar
  142. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol Bioeng 78:731–740CrossRefPubMedGoogle Scholar
  143. Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, William Fenical (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100:6916–6921CrossRefPubMedGoogle Scholar
  144. Kurata K, Taniguchi K, Shiraishi K, Minoru M (1990) Feeding-deterrent diterpenes from the brown alga Dilophus okamuri. Phytochemistry 29:3453–3455CrossRefGoogle Scholar
  145. Langlois G (1975) Effect of algal exudates on substratum selection by the motile marine telotroch Vorticello marina. J Protozool 221115–123Google Scholar
  146. Lawrence JR, Korber DR, Hyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567PubMedGoogle Scholar
  147. Lustigmann B, Brown C (1991) Antibiotic production by marine algae isolated from the New York/New Jersey Coast. Bull Environ Contam Toxicol 46:329–335PubMedGoogle Scholar
  148. Lustigmann B, Lee LH, Thees N, Masucci J (1992) Production of antibacterial substances by macroalgae of the New York/ New Jersey Coast. Bull Environ Contam Toxicol 49:743–749PubMedGoogle Scholar
  149. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermis is a linear β-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183PubMedGoogle Scholar
  150. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg PD, Kjelleberg S (1999) Inhibition of LuxR-based AHL regulation by halogenated furanones from Delisea pulchra. Microbiology 145:283–291PubMedGoogle Scholar
  151. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127PubMedGoogle Scholar
  152. Martin D, Uriz M (1993) Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. J Exp Mar Biol Ecol 173:11–27CrossRefGoogle Scholar
  153. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802CrossRefPubMedGoogle Scholar
  154. Marwick JD, Wright PC, Burgess JG (1999) Bioprocess intensification for production of novel marine bacterial antibiotics through bioreactor operation and design. Mar Biotechnol 1:495–507PubMedGoogle Scholar
  155. Mary A, Mary V, Rittschof D, Nagabhushanam R (1993) Bacterial–barnacle interaction: potential of using juncellins and antibiotics to alter structure of bacterial communities. J Chem Ecol 19:2155–2167Google Scholar
  156. Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from red alga Delisea pulchra Aquat Microb Ecol 15:233–246Google Scholar
  157. Mayer AM, Gustafson KR (2003) Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 105:291–299CrossRefPubMedGoogle Scholar
  158. McLachlan J, Craigie JS (1964) Algal inhibition by yellow ultra-violet absorbing substances from Fucus vesiculosus. Can J Bot 42:287–292Google Scholar
  159. McLachlan J, Craigie JS (1966) Antialgal activity of some simple phenols. J Phycol 2:133–135Google Scholar
  160. Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20(4–6):441–458Google Scholar
  161. Miao S, Anderson RJ, Allen TM (1990) Cytotoxic metabolites from the sponge Lanthella basta collected in Papua New Guinea. J Nat Prod 53:1441–1446PubMedGoogle Scholar
  162. Miguel O (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors.J Appl Phycol 12:499–506CrossRefGoogle Scholar
  163. Miki W, Kon-ya K, Mizobuchi S (1996) Biofouling and marine biotechnology: new antifoulants from marine invertebrates. J Mar Biotechnol 4:117–120Google Scholar
  164. Mizukoshi S, Matsuoka H, Katou H, Noda H (1992) Search of bioactive substances from marine algae. Bull Fac Bioresour Mie Univ Seibutsushigen Kiyo 8:27–34Google Scholar
  165. Moffitt MC, Neilan BA (2001) On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol Lett 196:207–214CrossRefPubMedGoogle Scholar
  166. Molina E, Fernandez J, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefPubMedGoogle Scholar
  167. Moore RE (1982) Toxins, anticancer agents and tumor promoters from marine prokaryotes. Pure Appl Chem 54:1919–1934Google Scholar
  168. Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143PubMedGoogle Scholar
  169. Moore RE, Patterson GML, Carmichael WW (1988) New pharmaceuticals from cultured blue-green algae. In: Fauntin DG (eds) Biomedical importance of marine organisms—memoirs of the Californian Academy of Science, vol 13. Californian Academy of Science, San Franscisco, pp 143–150Google Scholar
  170. Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74:136–144CrossRefPubMedGoogle Scholar
  171. Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77:155–162CrossRefPubMedGoogle Scholar
  172. Muller-Feuga A, Pruvost J, Le Guedes R, Le Dean L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch continuous cultures of Porphyridium cruentum. Biotechnol Bioeng 84:544–551CrossRefPubMedGoogle Scholar
  173. Murakami N, Orimoto T, Lamura H, Ueda T, Nagai SI, Sakakibara J, Yamada N (1991) Studies on glycolipids. 3. Glyceroglycolipids from an axenically cultured cyanobacterium Phormidium tenue. Chem Pharm Bull Tokyo 39:2277–2281PubMedGoogle Scholar
  174. Nagai H, Satake M, Yasumoto T (1990) Antimicrobial activities of polyether compounds of dinoflagellate origins. J Appl Phycol 2:305–308Google Scholar
  175. Nagai H, Mikami Y, Yazawa K, Gonoi T, Yasumoto T (1993) Biological activities of novel polyether antifungals, gambieric acids A and B from a marine dinoflagellate Gambierdiscus toxicus. J Antibiot 46:520–522PubMedGoogle Scholar
  176. Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421CrossRefGoogle Scholar
  177. Nagle DG, Paul VJ, Roberts MA (1996) Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 37:6263–6266CrossRefGoogle Scholar
  178. Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cynanobacteria. J Ind Microbiol 17:373–384Google Scholar
  179. Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84PubMedGoogle Scholar
  180. Ohta S, Chang T, Ikegami N, Kondo M, Miyata H (1993) Antibiotic substances produced by a newly isolated marine microalga, Chlorococcum HS-101. Bull Environ Contam Toxicol 50:171–178PubMedGoogle Scholar
  181. Ohta S, Chang T, Kawashima A, Nagate T, Murase M, Nakanisi H, Miyata H, Kondo M (1994) Bull Environ Contam Toxicol 52:673–680PubMedGoogle Scholar
  182. Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448CrossRefPubMedGoogle Scholar
  183. Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brozel VS (2002) Proteomic analysis revelas differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68:2770–2780CrossRefPubMedGoogle Scholar
  184. O’Toole GA, Kaplan H, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79CrossRefPubMedGoogle Scholar
  185. Otto K, Norbeck J, Larsson T, Karlsson KA, Hermansson M (2001) Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J Bacteriol 183:2445–2453CrossRefPubMedGoogle Scholar
  186. Padmakumar K, Ramaswamy S, Ayyakkannu K, Nair PGV (1993) Analgesic activity of marine plants. In: Devadsan K, Mukundan MK, Antony PD, Nair PGV, Perigreen PA, Joseph J (eds) Nutrients and bioactive substances in aquatic organisms. Society of Fisheries Technologists (India), Cochin, pp 25–30Google Scholar
  187. Patterson GML, Carmelli S (1992) Biological effects of tolytoxin (6-hydroxy-7-O-methylscytophyin b), a potent bioactive metabolite from cyanobacteria. Arch Microbiol 157:406–410PubMedGoogle Scholar
  188. Paul VJ (1992) Ecological roles of marine natural products. Cornell University Press, New YorkGoogle Scholar
  189. Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209CrossRefPubMedGoogle Scholar
  190. Paul VJ, Van Alstyne KL (1988) Chemical defense and chemical variation in some tropical pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reefs 6:263–269Google Scholar
  191. Paul VJ, Littler M, Littler DS, Fenical W (1987) Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta). Isolation of new bioactive sesquiterpenoids. J Chem Ecol 13:1171–1185Google Scholar
  192. Pereira RC, Carvalho AG, Gama BA, Coutinho R (2002) Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants. Braz J Biol 62:311–320PubMedGoogle Scholar
  193. Peters L, König GM, Wright AD, Pukall R, Stackebrandt R, Eberl L, Riedel K (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Envir Microbiol 69:3469–3475CrossRefGoogle Scholar
  194. Pettit GR, Butler MS, Bass CG, Doubek DL, Williams MD, Schimdt JM, Pettit RK, Hooper JNA, Tackett LP, Filiatrault MJ (1995) Antineoplastic agents, 326. The stereochemistry of bastadins 8, 10, and 12 from the Bismarck archipelago marine sponge Lanthella basta. J Nat Prod 58:680–688PubMedGoogle Scholar
  195. Pietra F (1990) A secret world: natural products of marine life; 1st edn. Birkhäuser, BaselGoogle Scholar
  196. Polzin JJ, Rorrer GL, Cheney DP (2003) Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol Eng 20:205–15CrossRefPubMedGoogle Scholar
  197. Ponasik JA, Conova S, Kinghorn D, Kinney WA, Rittschof D, Ganem B (1998) Pseudoceratidine, a marine natural product with antifouling activity: synthetic and biological studies Tetrahedron 54:6977–6986Google Scholar
  198. Price RR, Patchan M, Clare AS, Rittschof D, Bonaventura J (1994) Performance enhancement of natural antifouling compounds and their analogs through microencapsulation and controlled release. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. Balkema, Rotterdam, pp 321–334Google Scholar
  199. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002PubMedGoogle Scholar
  200. Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Wiley-VCH, Weinheim, pp 107–136Google Scholar
  201. Purevdorj B, Stoodley P (2003) The role of cell signaling in biofilm development. In: Lens P, O’Flaherty V, Moran A, Stoodley P, Mahony T (eds.) Biofilms in industry, medicine and environmental biotechnology—characteristics, analysis and control. IWA Publishing, London, pp 63–78Google Scholar
  202. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:129–141Google Scholar
  203. Rasmussen K, Østgaard K (2003) Adhesion of the marine bacterium Pseudomonas sp. NCIMB 2021 to different hydrogel surfaces. Water Res 37:519–534CrossRefPubMedGoogle Scholar
  204. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 12:3237–3244Google Scholar
  205. Reid RC, Abbenante G, Taylor SM, Fairlie DP (2003) A convergent solution-phase synthesis of the macrocycle Ac-Phe-[Orn-Pro-D-Cha-Trp-Arg], a potent new antiinflammatory drug. J Org Chem 68:4464–4471CrossRefPubMedGoogle Scholar
  206. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736CrossRefPubMedGoogle Scholar
  207. Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett Appl Microbiol 34:293–299CrossRefPubMedGoogle Scholar
  208. Riguera R (1997) Isolating bioactive compounds from marine organisms. J Mar Biotechnol 5:187–193Google Scholar
  209. Rittschof D (1999) Fouling and natural products as antifoulants. In: Fingerman M, Nagabhushanam R, Thompson MF (eds) Recent advances in marine biotechnology. Science Publishers, USA, pp 245–257Google Scholar
  210. Rittschof D (2001) Natural products antifoulants and coatings development. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. Marine science series. CRC, London, pp 543–566Google Scholar
  211. Rohde H, Knobloch JK, Horstkotte MA, Mack D (2001) Correlation of biofilm expression types of Staphylococcus epidermidis with polysaccharide intercellular adhesin synthesis: evidence for involvement of icaADBC genotype-independent factors. Med Microbiol Immunol 190:105–112PubMedGoogle Scholar
  212. Romanos MT, Andrada-Serpa MJ, Mourao PA, Yoneshigue-Valentin Y, Costa SS, Pereira MS, Miranda MM, Goncalves JL, Wigg MD (2002) A sulphated fucan from the Laminaria abyssalis inhibits the human T cell lymphotropic virus type 1-induced syncytium formation in HeLa cells. Antivir Chem Chemother 13:219–221PubMedGoogle Scholar
  213. Rosell KG, Srivastava LM (1987) Fatty acids as antimicrobial substances in brown algae. In: Ragan A, Bird CJ (eds) Twelfth international seaweed symposium. Developments in hydrobiology 41 (reprinted from Hydrobiologia 151/152). Junk, Dordrecht, pp 471–475Google Scholar
  214. Ruiz JM, Bryan GW, Gibbs PE (1995) Acute and chronic toxicity of tributytin (TBT) to pediveliger larvae of the bivalve Scrobicularia plana. Mar Biol 124:119–126Google Scholar
  215. Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  216. Sastry VMVS, Rao GRK (1994) Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Bot Mar 37:357–360Google Scholar
  217. Sato A (1996) The search for new drugs from marine organisms. J Toxicol Toxin Rev 15:171–198Google Scholar
  218. Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219CrossRefPubMedGoogle Scholar
  219. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154CrossRefPubMedGoogle Scholar
  220. Schembri MA, Kjaergaad K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–627PubMedGoogle Scholar
  221. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123Google Scholar
  222. Shimizu Y (2000) Microalgae as a drug source. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 30–45Google Scholar
  223. Shimizu Y (2003) Microalgal metabolites. Curr Opin Microbiol 6:236–243CrossRefPubMedGoogle Scholar
  224. Shin HW, Smith CM (2001) Antifouling activities of six non-toxic chemicals on spore attachment of Ulva fasciata. J Environ Biol 22:145–151PubMedGoogle Scholar
  225. Siddhanta AK, Ramavat BK, Chauhan VD, Achari B, Dutta PK, Pakrashi SC (1991) Sulphonoglycolipid from the green alga Enteromorpha flexuosa (wulf.) J Agric Bot Mar 34:365–367Google Scholar
  226. Siddhanta AK, Mody KH, Ramavat BK, Chauhan VD, Garg HS, Goel AK, Doss MJ, Srivastava GK, Patnaik GK, Kamboj VP (1997) Bioactivity of marine organisms, part 8: screening of some marine flora of western coast of India. Indian J Exp Biol 35:638–643PubMedGoogle Scholar
  227. Sieburth JM, Conover JT (1965) Sargassum tannin, an anti-biotic which retards fouling. Nature 208:52–53Google Scholar
  228. Smyrniotopoulos V, Abatis D, Tziveleka LA, Tsitsimpikou C, Roussis V, Loukis A, Constantinos V (2003) Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera. J Nat Prod 66:21–24CrossRefPubMedGoogle Scholar
  229. Sridhar KR, Vidyavathi N (1991) Antimicrobial activity of seaweeds. Acta Hydrochim Hydrobiol 19:455–496Google Scholar
  230. Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629CrossRefGoogle Scholar
  231. Steinberg PD, de Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–24Google Scholar
  232. Steinberg PD, de Nys R, Kjelleberg S (2001) Chemical mediation of surface colonisation. In: McClintock J, Baker B (eds) Marine chemical ecology. Marine science series. CRC Press, Boca RatonGoogle Scholar
  233. Stupak ME, Garcia MT, Pérez MC (2003) Non toxic alternative compounds for marine antifouling paints. Int Biodeterior Biodegrad 52:49–52CrossRefGoogle Scholar
  234. Suzuki T, Matsuda R, Saito Y (1992) Molecular species of tri-n-butyltin compounds in marine products. J Agric Food Chem 40:1437–1443Google Scholar
  235. Szewzyk U, Holmstroem C, Wrangstadh M, Samuelsson MO, Maki JS, Kjelleberg S (1991) Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar Ecol Prog Ser 75:259–265Google Scholar
  236. Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M (2002) Halogenated metabolites from the new Okinawan red alga Laurencia yonaguniensis. J Nat Prod 65:395–398CrossRefPubMedGoogle Scholar
  237. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608CrossRefPubMedGoogle Scholar
  238. Takasawa R, Ogura C, Watanabe H, Etoh K, Sakata K, Ina K (1992) An efficient laboratory matching and screening method for antifouling substances using blue mussel Mytilus edulis and antimicrobial assay. Biosci Biotechnol Biochem 56:1208–1211Google Scholar
  239. Tanaka N, Asakawa A (1988) Allelophatic effect of mucilage released from a brown alga Sargassum horneri on marine diatoms. Nippon Suisan Gakkaishi 54:1711–1714Google Scholar
  240. Teuscher E, Lindequist U (1994) Biogene Gifte. Biologie-Chemie-Pharmakologie. Fischer, StuttgartGoogle Scholar
  241. Teuscher E, Lindequist U, Mundt S (1992) Cyanobakterien, Quellen biogener Wirkstoffe. Pharm Ztg Wiss 137:57–69Google Scholar
  242. Tietze LF, Bell HP, Chandrasekhar S (2003) Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed Engl 42:3996–4028CrossRefPubMedGoogle Scholar
  243. Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 10:753–764CrossRefGoogle Scholar
  244. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197CrossRefPubMedGoogle Scholar
  245. Tsoukatou M, Hellio C, Vagias C, Harvala C, Roussis V (2002) Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia. Z Naturforsch 57:161–171Google Scholar
  246. Tsygankov AA, Borodin VB, Rao KK, Hall DO (1999) H(2) photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnol Bioeng 64:709–715CrossRefPubMedGoogle Scholar
  247. Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80:777–783CrossRefPubMedGoogle Scholar
  248. Tziveleka LA, Vagias C, Roussis V (2003) Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem 3:1512–1535PubMedGoogle Scholar
  249. Umemura K, Yanase K, Suzuki M, Okutani K, Yamori T, Andoh T (2003) Inhibition of DNA topoisomerases I and II, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochem Pharmacol 66:481–487CrossRefPubMedGoogle Scholar
  250. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259CrossRefPubMedGoogle Scholar
  251. Vairappan CS, Suzuki M, Abe T, Masua M (2001) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517–523CrossRefPubMedGoogle Scholar
  252. Vanelle L, Le Gal Y (1995) Marine antifoulants from North Atlantic algae and invertebrates. J Mar Biotechnol 3:161–163Google Scholar
  253. Wahidulia S, D’souza L, Das B, Patnaik GK (1987) Oxtoxic principle of red alga Amphiroa fragilissima. Bot Mar 30:411–412Google Scholar
  254. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189Google Scholar
  255. Walters LJ, Hadfield MG, Smith CM (1996) Water borne chemical compounds in tropical macro-algae: positive and negative cues for larval settlement. Mar Biol 126:383–393Google Scholar
  256. Willemsen PR, Ferrari GM (1993) The use of antifouling compounds from sponges in antifouling paints. Surf Coat Int 10:423–427Google Scholar
  257. Wilsanand V, Wagh AB, Bapuji M (2001) Antifouling activities of octocorals on some marine macrofoulers. Microbes 104:131–140Google Scholar
  258. Wu JT, Kuo-Huang LL, Lee J (1998) Algicidal effect of Peridinium bipes on Microcystis aeruginosa. Curr Microbiol 37:257–261CrossRefPubMedGoogle Scholar
  259. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62:1221–1224CrossRefPubMedGoogle Scholar
  260. Yang RY, Bayraktar O, Pu HT (2003) Plant-cell bioreactors with simultaneous electropermeabilization and electrophoresis. J Biotechnol 100:13–22CrossRefPubMedGoogle Scholar
  261. Yang X, Shimizu Y, Steiner JR, Clardy J (1993) Nostoclide I and II, extracellular metabolites from a symbiotic cyanobacterium, Nostoc sp., from the lichen Peltigera canina. Tetrahedron Lett 34:761–764CrossRefGoogle Scholar
  262. Yim JH, Kim SJ, Ahn SH, Lee HK (2003) Optimal conditions for the production of sulphated polysaccharide by marine microalga Gyrodinium impundicum strain KG03. Biomol Eng 20:273–280CrossRefPubMedGoogle Scholar
  263. Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25CrossRefPubMedGoogle Scholar
  264. Youngblood JP, Andruzzi L, Ober CK, Hexemer A. Kramer EJ, Callow JA, Finlay JA, Callow ME (2003) Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling 19:91–98CrossRefPubMedGoogle Scholar
  265. Zahuranec BJ (1991) The United States Navy and research on bioactive substances from the sea. In: Thompson MF, Sarojini R, Nagabhushanam R (eds) Bioactive compounds from marine organisms with emphasis on the Indian Ocean, an Indo-United States Symposium. Balkema, Rotterdam, pp 4–6Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Biological and Environmental Systems Group, Department of Chemical and Process EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Centre for Marine Biodiversity and Biotechnology, School of Life SciencesHeriot Watt UniversityEdinburghUK
  3. 3.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations