, Volume 219, Issue 4, pp 619–625 | Cite as

Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides

  • Sabine Kucht
  • Julia Groß
  • Yasser Hussein
  • Torsten Grothe
  • Ullrich Keller
  • Simla Basar
  • Wilfried A. König
  • Ulrike Steiner
  • Eckhard Leistner
Original Article


Ergoline alkaloids are constituents of Clavicipitaceous fungi living on Poaceae plants. Ergoline alkaloids as well as volatile oil are also present in Ipomoea asarifolia Roem. & Schult (Convolvulaceae). Treatment of this plant with two fungicides (Folicur, Pronto Plus) eliminates the ergoline alkaloids but not the volatile oil. Elimination of ergoline alkaloids occurs concomitantly with loss of fungal hyphae associated with secretory glands on the upper leaf surface of the Ipomoea plant. Our observations suggest that accumulation of ergoline alkaloids in the Convolvulaceae may depend on the presence of a plant-associated fungus.


Alkaloid Ergoline Ipomoea Plant–fungus association Secretory gland Volatile oil 



We thank Dr. D. Gröger (Halle, Germany) for reference samples, Dr. E. Eich (Berlin, Germany) for reference samples and seeds and Dr. Chris Schardl (Lexington, KY, USA) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie.


  1. Broun P, Somerville C (2001) Progress in plant metabolic engineering. Proc Natl Acad Sci USA 98:8925–8927CrossRefPubMedGoogle Scholar
  2. Buades C, Moya A (1996) Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J Mol Evol 42:537–542PubMedGoogle Scholar
  3. Bushman F (2002) Lateral DNA transfer. Mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  4. Caruso M, Colombo AL, Fedeli L, Pavesi A, Quadroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13Google Scholar
  5. Clay K (1991) Fungal endophytes, grasses and herbivores. In: Barbose P, Krischik VA, Jones CG (eds) Microbial mediation of plant–herbivore interactions. Wiley, New York, pp 199–226Google Scholar
  6. Clay K, Frentz IC (1993) Balansia pilulaeformis, an epiphytic species. Mycologia 85:527–534Google Scholar
  7. Davidse LC (1987) Biochemical aspects of benzimidazole fungicides-action and resistance. In: Lyr H (ed) Modern selective fungicides. Fischer, Jena, pp 245–257Google Scholar
  8. Dobberstein RH, Staba EJ (1969) Ipomoea, Rivea and Argyreia tissue cultures: influence of various chemical factors on indole alkaloid production and growth. Lloydia 32:141–147PubMedGoogle Scholar
  9. Europäisches Arzneibuch (1997) Amtliche deutsche Ausgabe, 3rd edn. Deutscher Apotheker Verlag, Stuttgart; Govi-Verlag-Pharmazeutischer Verlag, Eschborn, pp 129–130Google Scholar
  10. Frach K, Blaschke G (1998) Separation of ergot alkaloids and their epimers and determination in sclerotia by capillary electrophoresis. J Chromatogr A 808:247–252CrossRefPubMedGoogle Scholar
  11. Fritz R, Lanen C, Colas V, Leroux P (1997) Inhibition of methionine biosynthesis in Botrytis cinera by the anilinopyromidine fungicide pyrimenthanil. Pestic Sci 49:40–46CrossRefGoogle Scholar
  12. Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids—achievements and challenges. In: Cordell GA (ed) The alkaloids, vol 50. Academic Press, San Diego, pp 171–218Google Scholar
  13. Hegnauer R (1992) Chemotaxonomie der Pflanzen. Birkhäuser, BaselGoogle Scholar
  14. Hochmuth DH, Joulain D, König WA (2002) MassFinder Software and Data Bank, University of Hamburg. Scholar
  15. Jenett-Siems K, Kaloga M, Eich E (1994) Ergobalansine/ergobalansinine, a proline-free peptide-type alkaloid of the fungal genus Balansia, is a constituent of Ipomoea piurensis. J Nat Prod 57:1304–1306Google Scholar
  16. Kuck KH, Thielert W (1987) On the systemic properties of HWG 1608, the active ingredient of the fungicides Folicur and Raxil. Pflanzenschutz Nachr Bayer 40:133–152Google Scholar
  17. Lechevalier HA (1975) Production of the same antibiotics by members of different genera of microorganisms. Adv Appl Microbiol 19:25–45PubMedGoogle Scholar
  18. Lewis EA, Bills GF, Heredia G, Reyes M, Arias RM, White JF Jr (2002) A new species of endophytic Balansia from Veracruz, Mexico. Mycologia 94:1066–1070Google Scholar
  19. Lyr H (1995) Selectivity in modern fungicides and its basis. In: Lyr H (ed) Modern selective fungicides: properties, applications, mechanisms of action. Fischer, Stuttgart, pp 13–22Google Scholar
  20. Masner P, Muster P, Schmid P (1994) Possible methionine biosynthesis inhibition by pyrimidinamine fungicides. Pestic Sci 42:163–166Google Scholar
  21. Mockaitis JM, Kivilaan A, Schulze A (1973) Studies of the loci of indole alkaloid biosynthesis and alkaloid translocation in Ipomoea violacea plants. Biochem Physiol Pflanz 164:248–257Google Scholar
  22. Mothes K (1981) The problem of chemical convergence in secondary metabolism. Sci Scientists 323–326Google Scholar
  23. Mucciarelli M, Scannerini S, Bertea C M, Maffei M (2002) An ascomycetous endophyte isolated from Mentha piperita L.: biological features and molecular studies. Mycologia 94:28–39Google Scholar
  24. Nahrstedt A (1996) Relationships between the defense systems of plants and insects. In: Romeo JT, Saunders JA, Barbosa P (eds) Recent advances in phytochemistry, vol 30. Plenum, New York, pp 217–230Google Scholar
  25. Noh M-J, Yang J-G, Kim K-S, Yoon Y-M, Kang K-A, Han H-Y, Shim S-B, Park H-J (1999) Isolation of a novel microorganism, Pestalotia heterocornis. Biotechnol Bioeng 64:620–623CrossRefPubMedGoogle Scholar
  26. Ortega F, Steiner U, Dehne HW (1998) Induced resistance to apple scab: microscopic studies on the infection cycle of Venturia inaequalis (Cke.) Wint. J Phytopathol 146:399–405Google Scholar
  27. Panaccione DG, Johnson RD, Wang J, Young CA, Damronykool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass–Neotyphodium endophytic symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825CrossRefPubMedGoogle Scholar
  28. Porter JK (1994) Chemical constituents of grass endophytes. In: Bacon CW, White JW Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 103–123Google Scholar
  29. Reddy PV, Bergen MS, Patel R, White JF Jr (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90:108–117Google Scholar
  30. Stierle A, Strobel G, Stierle D (1995) The search for a taxol-producing microorganism among the endophytic fungi of the pacific yew, Taxus brevifolia. J Nat Prod 58:1315–1324PubMedGoogle Scholar
  31. Strobel G, Yang X, Sear J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440PubMedGoogle Scholar
  32. Taber WA, Heacock RA (1962) Location of ergot alkaloid and fungi in the seed of Rivea corymbosa (L.) Hall. f., “Ololiuqui”. Can J Microbiol 8:137–143PubMedGoogle Scholar
  33. Taber WA, Vining LC, Heacock RA (1963) Clavine and lysergic acid alkaloids in varieties of morning glory. Phytochemistry 2:65–70CrossRefGoogle Scholar
  34. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedGoogle Scholar
  35. Tiemann R, Berg D, Krämer W, Pontzen R (1997) Biochemistry of the new fungicide KWG 4168 (spiroxamine). Pflanzenschutz Nachr Bayer 57:211–219Google Scholar
  36. Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605CrossRefPubMedGoogle Scholar
  37. Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7CrossRefPubMedGoogle Scholar
  38. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253CrossRefPubMedGoogle Scholar
  39. Wani MV, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedGoogle Scholar
  40. Werner S, Steiner U, Becher R, Kortekamp A, Zyprian E, Deising HB (2002) Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiol Lett 208:169–173CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Sabine Kucht
    • 1
  • Julia Groß
    • 1
  • Yasser Hussein
    • 1
  • Torsten Grothe
    • 2
  • Ullrich Keller
    • 2
  • Simla Basar
    • 3
  • Wilfried A. König
    • 3
  • Ulrike Steiner
    • 4
  • Eckhard Leistner
    • 1
  1. 1.Institut für Pharmazeutische Biologie der Universität BonnBonnGermany
  2. 2.ActinoDrug Pharmaceuticals GmbHHennigsdorfGermany
  3. 3.Institut für Organische ChemieHamburgGermany
  4. 4.Institut für Pflanzenkrankheiten der Universität BonnBonnGermany

Personalised recommendations