Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 472, Issue 1, pp 117–133 | Cite as

Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan

  • Yang Xu
  • Xiao-Ming Zhao
  • Jia Liu
  • Yang-Yang Wang
  • Liu-Lin Xiong
  • Xiu-Ying He
  • Ting-Hua WangEmail author
Neuroscience
  • 72 Downloads
Part of the following topical collections:
  1. Neuroscience

Abstract

Complexin I (CPLX1), a presynaptic small molecule protein, forms SNARE complex in the central nervous system involved in the anchoring, pre-excitation, and fusion of axonal end vesicles. Abnormal expression of CPLX1 occurs in several neurodegenerative and psychiatric disorders that exhibit disrupted neurobehaviors. CPLX1 gene knockout induces severe ataxia and social behavioral deficits in mice, which has been poorly demonstrated. Here, to address the limitations of single-species models and to provide translational insights relevant to human diseases, we used CPLX1 knockout rats to further explore the function of the CPLX1 gene. The CRISPR/Cas9 gene editing system was adopted to generate CPLX1 knockout rats (CPLX1−/−). Then, we characterized the survival rate and behavioral phenotype of CPLX1−/− rats using behavioral analysis. To further explain this phenomenon, we performed blood glucose testing, Nissl staining, hematoxylin-eosin staining, and Golgi staining. We found that CPLX1−/− rats showed profound ataxia, dystonia, movement and exploratory deficits, and increased anxiety and sensory deficits but had normal cognitive function. Nevertheless, CPLX1−/− rats could swim without training. The abnormal histomorphology of the stomach and intestine were related to decreased weight and early death in these rats. Decreased dendritic branching was also found in spinal motor neurons in CPLX1−/− rats. In conclusion, CPLX1 gene knockout induced the abnormal histomorphology of the stomach and intestine and decreased dendritic branching in spinal motor neurons, causing different phenotypes between CPLX1−/− rats and mice, even though both of these phenotypes showed profound ataxia. These findings provide a new perspective for understanding the role of CPLX1.

Keywords

CPLX1 Ataxia Dystonia Rat Husbandry 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. NSF 81471268).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2019_2337_MOESM1_ESM.mp4 (799 kb)
ESM 1 (MP4 799 kb)
424_2019_2337_MOESM2_ESM.mp4 (863 kb)
ESM 2 (MP4 863 kb)

References

  1. 1.
    Abderrahmani A, Niederhauser G, Plaisance V, Roehrich ME, Lenain V, Coppola T, Regazzi R, Waeber G (2004) Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J Cell Sci 117:2239–2247.  https://doi.org/10.1242/jcs.01041 CrossRefPubMedGoogle Scholar
  2. 2.
    Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A (2008) Protective effect of IL-18 on kainate- and IL-1 beta-induced cerebellar ataxia in mice. J Immunol 180:2322–2328CrossRefGoogle Scholar
  3. 3.
    Babai N, Sendelbeck A, Regus-Leidig H, Fuchs M, Mertins J, Reim K, Brose N, Feigenspan A, Brandstatter JH (2016) Functional roles of Complexin 3 and Complexin 4 at mouse photoreceptor ribbon synapses. J Neurosci 36:6651–6667.  https://doi.org/10.1523/jneurosci.4335-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brose N (2008) For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9:1403–1413.  https://doi.org/10.1111/j.1600-0854.2008.00758.x CrossRefPubMedGoogle Scholar
  5. 5.
    Butt SJB, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963.  https://doi.org/10.1016/S0896-6273(03)00353-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 19:3248–3257CrossRefGoogle Scholar
  7. 7.
    Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409CrossRefGoogle Scholar
  8. 8.
    Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26.  https://doi.org/10.1016/S0006-8993(98)01258-X CrossRefPubMedGoogle Scholar
  9. 9.
    Drew CJ, Kyd RJ, Morton AJ (2007) Complexin I knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal. Hum Mol Genet 16:2288–2305.  https://doi.org/10.1093/hmg/ddm181 CrossRefPubMedGoogle Scholar
  10. 10.
    Eastwood SL, Harrison PJ (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5:425–432CrossRefGoogle Scholar
  11. 11.
    Egbujo CN, Sinclair D, Hahn CG (2016) Dysregulations of synaptic vesicle trafficking in schizophrenia. Curr Psychiatry Rep 18:77.  https://doi.org/10.1007/s11920-016-0710-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Enginar N, Nurten A, Turkmen AZ, Cagla B (2015) Scopolamine-induced convulsions in fasted animals after food intake: sensitivity of C57BL/6J mice and Sprague-Dawley rats. Epilepsy Res 112:150–153.  https://doi.org/10.1016/j.eplepsyres.2015.03.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Figueroa KP, Paul S, Cali T, Lopreiato R, Karan S, Frizzarin M, Ames D, Zanni G, Brini M, Dansithong W, Milash B, Scoles DR, Carafoli E, Pulst SM (2016) Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech 9:553–562.  https://doi.org/10.1242/dmm.022848 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Freeman W, Morton AJ (2004) Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull 63:45–55.  https://doi.org/10.1016/j.brainresbull.2003.12.004 CrossRefPubMedGoogle Scholar
  15. 15.
    Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, Rothman JE (2009) Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512–516.  https://doi.org/10.1126/science.1166500 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Glynn D, Bortnick RA, Morton AJ (2003) Complexin II is essential for normal neurological function in mice. Hum Mol Genet 12:2431–2448.  https://doi.org/10.1093/hmg/ddg249 CrossRefPubMedGoogle Scholar
  17. 17.
    Glynn D, Drew CJ, Reim K, Brose N, Morton AJ (2005) Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet 14:2369–2385.  https://doi.org/10.1093/hmg/ddi239 CrossRefPubMedGoogle Scholar
  18. 18.
    Glynn D, Sizemore RJ, Morton AJ (2007) Early motor development is abnormal in complexin I knockout mice. Neurobiol Dis 25:483–495.  https://doi.org/10.1016/j.nbd.2006.10.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Halberda JP, Middaugh LD, Gard BE, Jackson BP (1997) DAD1- and DAD2-like agonist effects on motor activity of C57 mice: differences compared to rats. Synapse 26:81–92.  https://doi.org/10.1002/(sici)1098-2396(199705)26:1<81::aid-syn9>3.0.co;2-a CrossRefPubMedGoogle Scholar
  20. 20.
    Hazell AS, Wang C (2005) Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke's encephalopathy. J Neurosci Res 79:200–207.  https://doi.org/10.1002/jnr.20278 CrossRefPubMedGoogle Scholar
  21. 21.
    Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506.  https://doi.org/10.1016/s0083-6729(08)00616-x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hoxha E, Balbo I, Miniaci MC, Tempia F (2018) Purkinje cell signaling deficits in animal models of ataxia. Front Synaptic Neurosci 10:6.  https://doi.org/10.3389/fnsyn.2018.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15:673–683.  https://doi.org/10.1038/gim.2013.28 CrossRefPubMedGoogle Scholar
  24. 24.
    Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538.  https://doi.org/10.1101/gr.1970304 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jin L, Ding YC, Zhang Y, Xu XQ, Cao Q (2016) A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des Dev Ther 10:2021–2028.  https://doi.org/10.2147/dddt.s107283 CrossRefGoogle Scholar
  26. 26.
    Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP (2013) A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 33:9068–9081.  https://doi.org/10.1523/jneurosci.5622-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lahut S, Gispert S, Omur O, Depboylu C, Seidel K, Dominguez-Bautista JA, Brehm N, Tireli H, Hackmann K, Pirkevi C, Leube B, Ries V, Reim K, Brose N, den Dunnen WF, Johnson M, Wolf Z, Schindewolf M, Schrempf W, Reetz K, Young P, Vadasz D, Frangakis AS, Schrock E, Steinmetz H, Jendrach M, Rub U, Basak AN, Oertel W, Auburger G (2017) Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin I loss for risk of Parkinson’s disease. Dis Model Mech 10:619–631.  https://doi.org/10.1242/dmm.028035 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769.  https://doi.org/10.1038/nrm2514 CrossRefPubMedGoogle Scholar
  29. 29.
    Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation. J Neurosci 19:10428–10437CrossRefGoogle Scholar
  30. 30.
    Lu B, Song S, Shin YK (2010) Accessory alpha-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. J Mol Biol 396:602–609.  https://doi.org/10.1016/j.jmb.2009.12.020 CrossRefPubMedGoogle Scholar
  31. 31.
    Lucas EK, Dougherty SE, McMeekin LJ, Reid CS, Dobrunz LE, West AB, Hablitz JJ, Cowell RM (2014) PGC-1alpha provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J Neurosci 34:14375–14387.  https://doi.org/10.1523/jneurosci.1222-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521.  https://doi.org/10.1126/science.1166505 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Melia TJ Jr (2007) Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 581:2131–2139.  https://doi.org/10.1016/j.febslet.2007.02.066 CrossRefPubMedGoogle Scholar
  34. 34.
    Mignogna P, Viggiano D (2010) Brain distribution of genes related to changes in locomotor activity. Physiol Behav 99:618–626.  https://doi.org/10.1016/j.physbeh.2010.01.026 CrossRefPubMedGoogle Scholar
  35. 35.
    Moriwaki C, Chiba S, Wei H, Aosa T, Kitamura H, Ina K, Shibata H, Fujikura Y (2015) Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. J Chem Neuroanat 68:1–13.  https://doi.org/10.1016/j.jchemneu.2015.07.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Perruolo G, Viggiano D, Fiory F, Cassese A, Nigro C, Liotti A, Miele C, Beguinot F, Formisano P (2016) Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice. Sci Rep 6.  https://doi.org/10.1038/srep29967
  37. 37.
    Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF (2017) A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 26:109–123.  https://doi.org/10.1093/hmg/ddw371 CrossRefPubMedGoogle Scholar
  38. 38.
    Radyushkin K, El-Kordi A, Boretius S, Castaneda S, Ronnenberg A, Reim K, Bickeboller H, Frahm J, Brose N, Ehrenreich H (2010) Complexin2 null mutation requires a 'second hit' for induction of phenotypic changes relevant to schizophrenia. Genes Brain Behav 9:592–602.  https://doi.org/10.1111/j.1601-183X.2010.00590.x CrossRefPubMedGoogle Scholar
  39. 39.
    Raevskaya NM, Dergunova LV, Vladychenskaya IP, Stavchansky VV, Oborina MV, Poltaraus AB, Limborska SA (2005) Structural organization of the human complexin 2 gene (CPLX2) and aspects of its functional activity. Gene 359:127–137.  https://doi.org/10.1016/j.gene.2005.07.005 CrossRefPubMedGoogle Scholar
  40. 40.
    Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL (2017) Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 26:3362–3374.  https://doi.org/10.1093/hmg/ddx224 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ramos-Miguel A, Sawada K, Jones AA, Thornton AE, Barr AM, Leurgans SE, Schneider JA, Bennett DA, Honer WG (2017) Presynaptic proteins complexin-I and complexin-II differentially influence cognitive function in early and late stages of Alzheimer's disease. Acta Neuropathol 133:395–407.  https://doi.org/10.1007/s00401-016-1647-9 CrossRefPubMedGoogle Scholar
  42. 42.
    Reim K, Wegmeyer H, Brandstatter JH, Xue MS, Rosenmund C, Dresbach T, Hofmann K, Brose N (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol 169:669–680.  https://doi.org/10.1083/jcb.200502115 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rios-Leon K, Fuertes-Ruiton C, Arroyo J, Ruiz J (2017) Chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine. Rev Peru Med Exp Salud Publica 34:70–75.  https://doi.org/10.17843/rpmesp.2017.341.2768 CrossRefPubMedGoogle Scholar
  44. 44.
    Sanger C, Schenk A, Schwen LO, Wang L, Gremse F, Zafarnia S, Kiessling F, Xie C, Wei W, Richter B, Dirsch O, Dahmen U (2015) Intrahepatic vascular anatomy in rats and mice--variations and surgical implications. PLoS One 10:e0141798.  https://doi.org/10.1371/journal.pone.0141798 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477.  https://doi.org/10.1126/science.1161748 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tallaksen CM (2008) Hereditary ataxias. Tidsskr Nor Laegeforen 128:1977–1980PubMedGoogle Scholar
  47. 47.
    Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187.  https://doi.org/10.1016/j.cell.2006.08.030 CrossRefPubMedGoogle Scholar
  48. 48.
    Thomas AM, Schwartz MD, Saxe MD, Kilduff TS (2017) Cntnap2 knockout rats and mice exhibit epileptiform activity and abnormal sleep-wake physiology. Sleep 40.  https://doi.org/10.1093/sleep/zsw026
  49. 49.
    Viggiano A, Cacciola G, Widmer DAJ, Viggiano D (2015) Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: evidence from gene expression data. Psychiatry Res 228:729–740.  https://doi.org/10.1016/j.psychres.2015.05.032 CrossRefPubMedGoogle Scholar
  50. 50.
    Viggiano D, Srivastava DP, Speranza L, Perrone-Capano C, Bellenchi GC, di Porzio U, Buckley NJ (2015) Quantifying barcodes of dendritic spines using entropy-based metrics. Sci Rep 5.  https://doi.org/10.1038/srep14622
  51. 51.
    Viggiano D, Speranza L, Crispino M, Bellenchi GC, di Porzio U, Iemolo A, De Leonibus E, Volpicelli F, Perrone-Capano C (2018) Information content of dendritic spines after motor learning. Behav Brain Res 336:256–260.  https://doi.org/10.1016/j.bbr.2017.09.020 CrossRefPubMedGoogle Scholar
  52. 52.
    Washington PM, Forcelli PA, Wilkins T, Zapple DN, Parsadanian M, Burns MP (2012) The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J Neurotrauma 29:2283–2296.  https://doi.org/10.1089/neu.2012.2456 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yang X, Cao P, Sudhof TC (2013) Deconstructing complexin function in activating and clamping Ca2+−triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci U S A 110:20777–20782.  https://doi.org/10.1073/pnas.1321367110 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK (2008) Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat Struct Mol Biol 15:707–713.  https://doi.org/10.1038/nsmb.1446 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yang Xu
    • 1
  • Xiao-Ming Zhao
    • 1
    • 2
  • Jia Liu
    • 3
  • Yang-Yang Wang
    • 1
  • Liu-Lin Xiong
    • 1
  • Xiu-Ying He
    • 1
  • Ting-Hua Wang
    • 1
    • 3
    Email author
  1. 1.Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina
  2. 2.Department of Basic Medicine, Medical SchoolKunming University of Science and TechnologyKunmingChina
  3. 3.Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina

Personalised recommendations