Skip to main content
Log in

Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The electrophysiological properties of the superior vena cava (SVC) myocardium, which is considered a minor source of atrial arrhythmias, were studied in this study during postnatal development. Conduction properties were investigated in spontaneously active and electrically paced SVC preparations obtained from 7–60-day-old male Wistar rats using optical mapping and microelectrode techniques. The presence of high-conductance connexin 43 (Cx43) was evaluated in SVC cross-sections using immunofluorescence. It was found that SVC myocardium is excitable, electrically coupled with the atrial tissue, and conducts excitation waves at all stages of postnatal development. However, the conduction velocity (CV) of excitation and action potential (AP) upstroke velocity in SVC were significantly lower in neonatal than in adult animals and increased with postnatal maturation. Connexins Cx43 were identified in both neonatal and adult rat SVC myocardium; however, the abundance of Cx43 was significantly less in neonates. The gap junction uncoupler octanol affected conduction more profound in the neonatal than in adult SVC. We demonstrated for the first time that the conduction characteristics of SVC myocardium change from a slow-conduction (nodal) to a high-conduction (working) phenotype during postnatal ontogenesis. An age-related CV increase may occur due to changes of AP characteristics, electrical coupling, and Cx43 presence in SVC cardiomyocyte membranes. Observed changes may contribute to the low proarrhythmicity of adult caval vein cardiac tissue, while pre- or postnatal developmental abnormalities that delay the establishment of the working conduction phenotype may facilitate SVC proarrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AP:

action potential

CV:

conduction velocity

Cx43:

Connexin 43

dv/dtmax :

Maximum upstroke velocity of action potential

SAN:

Sinoatrial node

SVC:

Superior vena cava

SV:

Sinus venosus

PV:

Pulmonary vein

RA:

Right atrium

RMP:

Resting membrane potential

References

  1. Anderson RH, Brown NA, Moorman AFM (2006) Development and structures of the venous pole of the heart. Dev Dyn 235:2–9. https://doi.org/10.1002/dvdy.20578

    Article  PubMed  Google Scholar 

  2. Atkinson AJ, Logantha SJRJ, Hao G, Yanni J, Fedorenko O, Sinha A, Gilbert SH, Benson AP, Buckley DL, Anderson RH, Boyett MR, Dobrzynski H (2013) Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc 2:e000246. https://doi.org/10.1161/JAHA.113.000246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, Greener ID, Honjo H, Billeter R, Lei M, Zhang H, Efimov IR, Dobrzynski H (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197

    Article  CAS  Google Scholar 

  4. Bruzzone R, Giaume C, Rozental R, Srinivas M, Spray DC (2003) How to close a gap junction channel: efficacies and potencies of uncoupling agents. Connexin Methods Protoc 154:447–476. https://doi.org/10.1385/1-59259-043-8:447

    Article  Google Scholar 

  5. Bukauskas FF, Elfgang C, Willecke K, Weingart R (1995) Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J 68:2289–2298. https://doi.org/10.1016/0002-9149(58)90270-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94:828–835. https://doi.org/10.1161/01.RES.0000122382.19400.14

    Article  CAS  PubMed  Google Scholar 

  7. Carrow R, Calhoun ML (1964) The extent of cardiac muscle in the great veins of the dog. Anat Rec 150:249–256. https://doi.org/10.1002/ar.1091500306

    Article  CAS  PubMed  Google Scholar 

  8. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, DiFrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H (2009) Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker. Circulation 119:1562–1575. https://doi.org/10.1161/CIRCULATIONAHA.108.804369

    Article  PubMed  Google Scholar 

  9. Christoffels VM, Mommersteeg MTM, Trowe MO, Prall OWJ, De Gier-De Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AFM, Kispert A (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98:1555–1563. https://doi.org/10.1161/01.RES.0000227571.84189.65

    Article  CAS  PubMed  Google Scholar 

  10. Cohen CJ, Bean BP, Tsien RW (1984) Maximal upstroke velocity as an index of available sodium conductance comparison of maximal upstroke velocity and voltage clamp measurements of sodium current in rabbit purkinje fibers. Circ Res 54:636–651. https://doi.org/10.1161/01.RES.54.6.636

    Article  CAS  PubMed  Google Scholar 

  11. Cullinan V, Campbell JH, Mosse PR, Campbell GR (1986) The morphology and cell culture of the striated musculature of the rat azygos vein. Cell Tissue Res 243:185–191. https://doi.org/10.1007/BF00221867

    Article  CAS  PubMed  Google Scholar 

  12. Diez U, Schwartze H (1991) Quantitative electrocardiography and vectorcardiography in postnatally developing rats. J Electrocardiol 24:53–62

    Article  CAS  Google Scholar 

  13. Dobrzynski H, Li J, Tellez J, Greener ID, Nikolski VP, Wright SE, Parson SH, Jones SA, Lancaster MK, Yamamoto M, Honjo H, Takagishi Y, Kodama I, Efimov IR, Billeter R, Boyett MR (2005) Computer three-dimensional reconstruction of the sinoatrial node. Circulation 111:846–854. https://doi.org/10.1161/01.CIR.0000152100.04087.DB

    Article  CAS  PubMed  Google Scholar 

  14. Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation 115:1921–1932. https://doi.org/10.1161/CIRCULATIONAHA.106.616011

    Article  PubMed  Google Scholar 

  15. Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D’Souza A, Fraser JF, Inada S, Logantha SJRJ, Monfredi O, Morris GM, Moorman AFM, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR (2013) Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 139:260–288. https://doi.org/10.1016/j.pharmthera.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  16. Endo H, Mifune H, Kurohmaru M, Hayashi Y (1996) Cardiac musculature of the cranial vena cava in the rat. Cells Tissues Organs 151:107–111. https://doi.org/10.1159/000147650

    Article  Google Scholar 

  17. Farman GP, Tachampa K, Mateja R, Cazorla O, Lacampagne A, De Tombe PP (2008) Blebbistatin: Use as inhibitor of muscle contraction. Pflugers Arch - Eur J Physiol 455:995–1005. https://doi.org/10.1007/s00424-007-0375-3

    Article  CAS  Google Scholar 

  18. Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW, Efimov IR (2007) Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626. https://doi.org/10.1016/j.hrthm.2006.12.047

    Article  PubMed  Google Scholar 

  19. Friedman WF, Pool PE, Jacobowitz D, Seagren SC, Braunwald E (1968) Sympathetic innervation of the developing rabbit heart. Circ Res 23:25–32

    Article  CAS  Google Scholar 

  20. Gourdie RG, Green CR, Severs NJ, Thompson RP (1992) Immunolabelling patterns of gap junction connexins in the developing and mature rat heart. Anat Embryol (Berl) 185:363–378. https://doi.org/10.1007/BF00188548

    Article  CAS  Google Scholar 

  21. Gussenhoven WJ, Essed CE, Bos E (1982) Persistent right sinus venosus valve. Br Heart J 47:183–185

    Article  CAS  Google Scholar 

  22. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J (1998) Spontaneous initiation of atrial fibrillation by ectopi c beats originating in the pulmonary veins. N Engl J Med 339:659–666. https://doi.org/10.1056/NEJM199809033391003

    Article  CAS  PubMed  Google Scholar 

  23. Hasan W (2013) Autonomic cardiac innervation. Organogenesis 9:176–193. https://doi.org/10.4161/org.24892

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hew KW, Keller KA (2003) Postnatal anatomical and functional development of the heart: a species comparison. Birth Defects Res (Part B) 68:309–320. https://doi.org/10.1002/bdrb.10034

    Article  CAS  Google Scholar 

  25. Hseu S-S, Yien H-W, Du F, Sun LS (1998) Heart rate variability in neonatal rats after perinatal cocaine exposure. Neurotoxicol Teratol 20:601–605. https://doi.org/10.1016/S0892-0362(98)00026-9

    Article  CAS  PubMed  Google Scholar 

  26. Jensen B, Boukens B, Wang T, Moorman A, Christoffels V (2014) Evolution of the sinus venosus from fish to human. J Cardiovasc Dev Dis 1:14–28. https://doi.org/10.3390/jcdd1010014

    Article  Google Scholar 

  27. Jensen CF, Bartels ED, Braunstein TH, Nielsen LB, Holstein-Rathlou NH, Axelsen LN, Nielsen MS (2019) Acute intramyocardial lipid accumulation in rats does not slow cardiac conduction per se. Physiol Rep 7:e14049. https://doi.org/10.14814/phy2.14049

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiménez-López J, Vallès E, Benito B, Martí-Almor J (2017) Insights of the superior vena cava conduction properties: a 3-D high resolution mapping case of typical flutter. J Cardiovasc Electrophysiol 29:2–3. https://doi.org/10.1111/jce.13350

    Article  Google Scholar 

  29. Kanagaratnam P, Rothery S, Patel P, Severs NJ, Peters NS (2002) Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol 39:116–123. https://doi.org/10.1016/S0735-1097(01)01710-7

    Article  CAS  PubMed  Google Scholar 

  30. Kreuzberg MM, Willecke K, Bukauskas FF (2006) Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16:266–272. https://doi.org/10.1016/j.tcm.2006.05.002.Connexin-Mediated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, Donofrio MT, Leatherbury L, Lo CW (2014) A detailed comparison of mouse and human cardiac development. Pediatr Res 76:500–507. https://doi.org/10.1038/pr.2014.128

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kucera JP, Rohr S, Rudy Y (2002) Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res 91:1176–1182

    Article  CAS  Google Scholar 

  33. Kugler S, Nagy N, Rácz G, Tőkés AM, Dorogi B, Nemeskéri Á (2018) Presence of cardiomyocytes exhibiting Purkinje-type morphology and prominent connexin45 immunoreactivity in the myocardial sleeves of cardiac veins. Heart Rhythm 15:258–264. https://doi.org/10.1016/j.hrthm.2017.09.044

    Article  PubMed  Google Scholar 

  34. Kuzmin VS, Egorov YV, Karimova VM, Rosenshtraukh ALV (2015) Evaluation of the length constant in the atrial myocardium and pulmonary vein myocardium in mammals. Dokl Biol Sci 460:8–11. https://doi.org/10.1134/S0012496615010093

    Article  CAS  PubMed  Google Scholar 

  35. Kwong KF, Schuessler RB, Green KG, Laing JG, Eric C, Boineau JP, Saffitz JE, Beyer EC (1998) Differential expression of gap junction proteins in the canine sinus node. Circ Res 82:604–613

    Article  CAS  Google Scholar 

  36. Lee TM, Lin SZ, Chang NC (2013) Both PKA and Epac pathways mediate N-acetylcysteine-induced connexin43 preservation in rats with myocardial infarction. PLoS One 8:e71878. https://doi.org/10.1371/journal.pone.0071878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lipp JAM, Rudolph AM (1972) Sympathetic nerve development in the rat and guinea-pig heart. Biol Neononate 21:76–82

    Article  CAS  Google Scholar 

  38. Maier SKG, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. PNAS 99:4073–4078

    Article  CAS  Google Scholar 

  39. Marvin WJ, Hermsmeyer K, McDonald RI, Roskoski LM, Roskoski R (1980) Ontogenesis of cholinergic innervation in the rat heart. Circ Res 46:690–695. https://doi.org/10.1161/01.RES.46.5.690

    Article  CAS  PubMed  Google Scholar 

  40. Masani F (1986) Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat 145:133–142

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyazaki S, Takigawa M, Kusa S, Kuwahara T, Taniguchi H, Okubo K, Nakamura H, Hachiya H, Hirao K, Takahashi A, Iesaka Y (2014) Role of arrhythmogenic superior vena cava on atrial fibrillation. J Cardiovasc Electrophysiol 25:380–386. https://doi.org/10.1111/jce.12342

    Article  PubMed  Google Scholar 

  42. Momma K, Linde LM (1969) Abnormal rhythms associated with persistent left superior vena cava. Pediatr Res 3:210–216. https://doi.org/10.1203/00006450-196905000-00004

    Article  CAS  PubMed  Google Scholar 

  43. Mommersteeg MTM, Hoogaars WMH, Prall OWJ, De Gier-De Vries C, Wiese C, Clout DEW, Papaioannou VE, Brown NA, Harvey RP, Moorman AFM, Christoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362. https://doi.org/10.1161/01.RES.0000258019.74591.b3

    Article  CAS  PubMed  Google Scholar 

  44. Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflugers Arch - Eur J Physiol 402:248–257. https://doi.org/10.1007/BF00585507

    Article  CAS  Google Scholar 

  45. Needham J (1970) Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol 25:141–148

    Article  Google Scholar 

  46. Occhetta E, Dell’Era G, Degiovanni A, Sartori C (2015) Persistence of left superior vena cava and focal right atrial tachycardia: challenges and interventional treatment. Cor Vasa 57:e354–e358. https://doi.org/10.1016/j.crvasa.2015.05.008

    Article  Google Scholar 

  47. Olsen KB, Axelsen LN, Braunstein TH, Sørensen CM, Andersen CB, Ploug T, Holstein-Rathlou NH, Nielsen MS (2013) Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats. Cardiovasc Diabetol 12:1–11. https://doi.org/10.1186/1475-2840-12-19

    Article  CAS  Google Scholar 

  48. Oosthoek PW, Viragh S, Mayen AEM, van Kempen MJA, Lamers WH, We AFMM (1993) Immunohistochemical delineation of the conduction system: I: the sinoatrial node. Circ Res 73:473–481. https://doi.org/10.1161/01.RES.73.3.473

    Article  CAS  PubMed  Google Scholar 

  49. Piffer CR, Piffer MIS, Santi FP, Dayoub MCO (1996) Structural Characteristics of the superior intrapericardium segment in adults venae cavae wall at the and aging individuals. Okajimas Folia Anat 73:89–100

    Article  CAS  Google Scholar 

  50. Quigley KS, Shair HN, Myers MM (1996) Parasympathetic control of heart period during early postnatal development in the rat. J Auton Nerv Syst 59(1–2):75–82. https://doi.org/10.1016/0165-1838(96)00010-0

    Article  CAS  Google Scholar 

  51. Rohr S, Kucera JP, Kléber AG, Rohr S, Kucera JP, Kle G (1998) Slow conduction in cardiac tissue, I: Effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Circ Res 83:781–794. https://doi.org/10.1161/01.RES.83.8.781

    Article  CAS  PubMed  Google Scholar 

  52. Sharma SP, Sangha RS, Dahal K, Krishnamoorthy P (2017) The role of empiric superior vena cava isolation in atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials. J Interv Card Electrophysiol 48:61–67. https://doi.org/10.1007/s10840-016-0198-2

    Article  PubMed  Google Scholar 

  53. Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Circ Res 81:727–741. https://doi.org/10.1161/01.RES.81.5.727

    Article  CAS  PubMed  Google Scholar 

  54. Shinagawa Y, Satoh H, Noma A (2000) The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J Physiol 523:593–605

    Article  CAS  Google Scholar 

  55. Weingart R, Bukauskas FF (1998) Long-chain n-alkanols and arachidonic acid interfere with the V(m)-sensitive gating mechanism of gap junction channels. Pflugers Arch - Eur J Physiol 435:310–319. https://doi.org/10.1007/s004240050517

    Article  CAS  Google Scholar 

  56. Yeh HI, Lai YJ, Lee SH, Lee YN, Ko YS, Chen SA, Severs NJ, Tsai CH (2001) Heterogeneity of myocardial sleeve morphology and gap junctions in canine superior vena cava. Circulation 104:3152–3157. https://doi.org/10.1161/hc5001.100836

    Article  CAS  PubMed  Google Scholar 

  57. Zehendner CM, Luhmann HJ, Yang JW (2013) A simple and novel method to monitor breathing and heart rate in awake and urethane-anesthetized newborn rodents. PLoS One 8:1–9. https://doi.org/10.1371/journal.pone.0062628

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (RFBR) (grant no. 18-315-00253).

Author information

Authors and Affiliations

Authors

Contributions

Alexandra D. Ivanova carried out electrophysiological experiments, data analysis, and drafted the manuscript. Daria V. Samoilova performed the immunohistochemical staining. Artem A. Razumov carried out the analysis of optical mapping data. Vlad S. Kuzmin conceived and designed the study and drafted and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandra D. Ivanova.

Ethics declarations

All experimental procedures were carried out in accordance with the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and approved by the Ethics Committee of the Biological faculty of MSU.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.D., Samoilova, D.V., Razumov, A.A. et al. Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis. Pflugers Arch - Eur J Physiol 471, 1493–1503 (2019). https://doi.org/10.1007/s00424-019-02320-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02320-0

Keywords

Navigation