Advertisement

Plasticity leading to cerebellum-dependent learning: two different regions, two different types

  • Dong Cheol Jang
  • Sang Jeong KimEmail author
Invited Review
  • 288 Downloads
Part of the following topical collections:
  1. Invited Review

Abstract

In memory research, studying cerebellum-dependent memory is advantageous due to its relatively simple neural architecture compared with that of other memory circuits. To understand how cerebellum-dependent memory develops and is stored in this circuit, numerous hypotheses have been proposed. These hypotheses are generally able to adequately explain most learning and memory processes; however, several reported results are still poorly understood. Recently, the importance of intrinsic plasticity (i.e., plasticity of intrinsic excitability) has been highlighted in several studies. Because the classical view of cerebellum-dependent eye movement learning was focused on synaptic plasticity, it is valuable to consider the intrinsic plasticity for deeper understanding. In the present review, we re-examine the utility and limitations of previous hypotheses, from classic to recent, and propose an updated hypothesis. Integrating intrinsic plasticity into current models of the vestibulo-ocular reflex (VOR) circuit may facilitate deeper understanding of the VOR adaptation process. In particular, during the period of memory transfer, dynamic changes in excitability in both cerebellar Purkinje cells and vestibular nuclear neurons illuminate the role of intrinsic plasticity in the circuit.

Keywords

Cerebellum Purkinje cells Vestibular nucleus Intrinsic plasticity Vestibulo-ocular reflex (VOR) Memory 

Notes

Acknowledgments

We thank to Trace Lamar Stay for revising the manuscript.

Funding information

This study was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) 2018R1A5A2025964, 2017M3C7A1029611, and 2016R1D1A1A02937282 to S.J.K; and a Global Ph.D. fellowship program, 2013H1A2A1034318 to D.C.J.

References

  1. 1.
    Ahn S, Ginty DD, Linden DJ (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23:559–568.  https://doi.org/10.1016/S0896-6273(00)80808-9 CrossRefGoogle Scholar
  2. 2.
    Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61.  https://doi.org/10.1016/0025-5564(71)90051-4 CrossRefGoogle Scholar
  3. 3.
    Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, De Zeeuw CI, De Jeu MTG (2007) Estradiol improves cerebellar memory formation by activating estrogen receptor. J Neurosci 27:10832–10839.  https://doi.org/10.1523/JNEUROSCI.2588-07.2007 CrossRefGoogle Scholar
  4. 4.
    Attwell PJE, Cooke SF, Yeo CH (2002) Cerebellar function in consolidation of a motor memory. Neuron 34:1011–1020.  https://doi.org/10.1016/S0896-6273(02)00719-5 CrossRefGoogle Scholar
  5. 5.
    Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, He Q, Ohtsuki G, De Jeu MTG, Elgersma Y, De Zeeuw CI, Jörntell H, Hansel C (2010) Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci 30:13630–13643.  https://doi.org/10.1523/JNEUROSCI.3226-10.2010 CrossRefGoogle Scholar
  6. 6.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.  https://doi.org/10.1038/361031a0 CrossRefGoogle Scholar
  7. 7.
    Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609.  https://doi.org/10.1146/annurev.neuro.27.070203.144238 CrossRefGoogle Scholar
  8. 8.
    Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL (2006) Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51:823–834.  https://doi.org/10.1016/j.neuron.2006.08.026 CrossRefGoogle Scholar
  9. 9.
    Carcaud J, França de Barros F, Idoux E, Eugène D, Reveret L, Moore LE, Vidal P-P, Beraneck M (2017) Long-lasting visuo-vestibular mismatch in freely-behaving mice reduces the vestibulo-ocular reflex and leads to neural changes in the direct vestibular pathway. 4 (1) ENEURO.0290-16.2017.  https://doi.org/10.1523/ENEURO.0290-16.2017
  10. 10.
    Clopath C, Badura A, Zeeuw CI, Brunel N (2014) A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 34:7203–7215.  https://doi.org/10.1523/JNEUROSCI.2791-13.2014 CrossRefGoogle Scholar
  11. 11.
    Cooke SF, Attwell PJ, Yeo CH (2004) Temporal properties of cerebellar-dependent memory consolidation. J Neurosci 24:2934–2941.  https://doi.org/10.1523/JNEUROSCI.5505-03.2004 CrossRefGoogle Scholar
  12. 12.
    Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465.  https://doi.org/10.1101/lm.64103 CrossRefGoogle Scholar
  13. 13.
    Daoudal G, Hanada Y, Debanne D (2002) Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 99:14512–14517.  https://doi.org/10.1073/pnas.222546399 CrossRefGoogle Scholar
  14. 14.
    De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508.  https://doi.org/10.1016/S0896-6273(00)80990-3 CrossRefGoogle Scholar
  15. 15.
    Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302.  https://doi.org/10.1083/jcb.200306148 CrossRefGoogle Scholar
  16. 16.
    Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D’Angelo E, van den Maagdenberg AMJM, Hoebeek FE, De Zeeuw CI (2013) Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep 3:1239–1251.  https://doi.org/10.1016/j.celrep.2013.03.023 CrossRefGoogle Scholar
  17. 17.
    Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635.  https://doi.org/10.1038/nrn3312 CrossRefGoogle Scholar
  18. 18.
    Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–475.  https://doi.org/10.1038/87419 CrossRefGoogle Scholar
  19. 19.
    Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GHH, Andreev D, De Zeeuw CI, Elgersma Y (2006) alpha CaMKII is essential for cerebellar LTD and motor learning. Neuron 51:835–843.  https://doi.org/10.1016/j.neuron.2006.08.013 CrossRefGoogle Scholar
  20. 20.
    Hirata Y, Highstein SM (2001) Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol 85:2267–2288.  https://doi.org/10.1152/jn.2001.85.5.2267 CrossRefGoogle Scholar
  21. 21.
    Inoshita T, Hirano T (2018) Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. Elife 7:113.  https://doi.org/10.7554/eLife.36209 CrossRefGoogle Scholar
  22. 22.
    Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40:81–84.  https://doi.org/10.1016/0006-8993(72)90110-2 CrossRefGoogle Scholar
  23. 23.
    Ito M (1982) Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annu Rev Neurosci 5:275–296.  https://doi.org/10.1146/annurev.ne.05.030182.001423 CrossRefGoogle Scholar
  24. 24.
    Ito M (2013) Error detection and representation in the olivo-cerebellar system. Front Neural Circuits 7:1.  https://doi.org/10.3389/fncir.2013.00001 CrossRefGoogle Scholar
  25. 25.
    Ito M, Shida T, Yagi N, Yamamoto M (1974) The cerebellar modification of rabbit’s horizontal vestibulo-ocular reflex induced by sustained head rotation combined with visual stimulation. Proc Jpn Acad 50:85–89.  https://doi.org/10.2183/pjab1945.50.85 CrossRefGoogle Scholar
  26. 26.
    Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res 45:233–242.  https://doi.org/10.1007/BF00235783 Google Scholar
  27. 27.
    Jang DC, Shim HG, Kim SJ (2019) Intrinsic plasticity of cerebellar Purkinje cells in motor learning circuits. bioRxiv.  https://doi.org/10.1101/513283
  28. 28.
    Kakegawa W, Katoh A, Narumi S, Miura E, Motohashi J, Takahashi A, Kohda K, Fukazawa Y, Yuzaki M, Matsuda S (2018) Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron. 99:985–998.e6.  https://doi.org/10.1016/j.neuron.2018.07.034 CrossRefGoogle Scholar
  29. 29.
    Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186.  https://doi.org/10.1016/j.cell.2014.03.001 CrossRefGoogle Scholar
  30. 30.
    Kassardjian CD, Tan Y-FF, Chung J-YJY, Heskin R, Peterson MJ, Broussard DM (2005) The site of a motor memory shifts with consolidation. J Neurosci 25:7979–7985.  https://doi.org/10.1523/JNEUROSCI.2215-05.2005 CrossRefGoogle Scholar
  31. 31.
    Ke MC, Guo CC, Raymond JL (2009) Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci 12:1171–1179.  https://doi.org/10.1038/nn.2366 CrossRefGoogle Scholar
  32. 32.
    Kellett DO, Fukunaga I, Chen-Kubota E, Dean P, Yeo CH (2010) Memory consolidation in the cerebellar cortex. PLoS One 5:e11737.  https://doi.org/10.1371/journal.pone.0011737 CrossRefGoogle Scholar
  33. 33.
    Li C-Y, Lu J-T, Wu C-P, Duan S-M, Poo M-M (2004) Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron 41:257–268CrossRefGoogle Scholar
  34. 34.
    Lisberger SG, Miles FA, Zee DS (1984) Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. J Neurophysiol 52:1140–1153.  https://doi.org/10.1152/jn.1984.52.6.1140 CrossRefGoogle Scholar
  35. 35.
    Lisberger SG, Pavelko TA, Bronte-Stewart HM, Stone LS (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J Neurophysiol 72:954–973.  https://doi.org/10.1152/jn.1994.72.2.954 CrossRefGoogle Scholar
  36. 36.
    Lisberger SG, Pavelko TA, Broussard DM (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. J Neurophysiol 72:928–953.  https://doi.org/10.1152/jn.1994.72.2.928 CrossRefGoogle Scholar
  37. 37.
    Marr D (1969) A theory of cerebellar cortex. J Physiol Lond 202:437–470.  https://doi.org/10.1113/jphysiol.1969.sp008820 CrossRefGoogle Scholar
  38. 38.
    Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711.  https://doi.org/10.1146/annurev.neuro.23.1.649 CrossRefGoogle Scholar
  39. 39.
    McElligott JG, Beeton P, Polk J (1998) Effect of cerebellar inactivation by lidocaine microdialysis on the vestibuloocular reflex in goldfish. J Neurophysiol 79:1286–1294.  https://doi.org/10.1152/jn.1998.79.3.1286 CrossRefGoogle Scholar
  40. 40.
    McElvain LE, Bagnall MW, Sakatos A, du Lac S (2010) Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron 68:763–775.  https://doi.org/10.1016/j.neuron.2010.09.025 CrossRefGoogle Scholar
  41. 41.
    Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4:273–299.  https://doi.org/10.1146/annurev.ne.04.030181.001421 CrossRefGoogle Scholar
  42. 42.
    Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53.  https://doi.org/10.1007/bf00239396
  43. 43.
    Nagao S, Kitazawa H (2003) Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience 118:563–570.  https://doi.org/10.1016/S0306-4522(02)00991-0 CrossRefGoogle Scholar
  44. 44.
    Ohtsuki G, Hansel C (2018) Synaptic potential and plasticity of an SK2 channel gate regulate spike burst activity in Cerebellar Purkinje Cells. iScience 1:49–54.  https://doi.org/10.1016/j.isci.2018.02.001 CrossRefGoogle Scholar
  45. 45.
    Ohtsuki G, Piochon C, Adelman JP, Hansel C (2012) SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron 75:108–120.  https://doi.org/10.1016/j.neuron.2012.05.025 CrossRefGoogle Scholar
  46. 46.
    Okamoto T, Endo S, Shirao T, Nagao S (2011) Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning. J Neurosci 31:8958–8966.  https://doi.org/10.1523/JNEUROSCI.1151-11.2011 CrossRefGoogle Scholar
  47. 47.
    Okamoto T, Shirao T, Shutoh F, Suzuki T, Nagao S (2011) Post-training cerebellar cortical activity plays an important role for consolidation of memory of cerebellum-dependent motor learning. Neurosci Lett 504:53–56.  https://doi.org/10.1016/j.neulet.2011.08.056 CrossRefGoogle Scholar
  48. 48.
    Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650.  https://doi.org/10.1152/jn.1995.73.2.632 CrossRefGoogle Scholar
  49. 49.
    Person AL, Raman IM (2011) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481:502–505.  https://doi.org/10.1038/nature10732 CrossRefGoogle Scholar
  50. 50.
    Piochon C, Kano M, Hansel C (2016) LTD-like molecular pathways in developmental synaptic pruning. Nat Neurosci 19:1299–1310.  https://doi.org/10.1038/nn.4389 CrossRefGoogle Scholar
  51. 51.
    Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935–1950.  https://doi.org/10.1371/journal.pcbi.0030197 CrossRefGoogle Scholar
  52. 52.
    Raymond JL, Lisberger SG (1998) Neural learning rules for the vestibulo-ocular reflex. J Neurosci 18:9112–9129.  https://doi.org/10.1523/JNEUROSCI.18-21-09112.1998 CrossRefGoogle Scholar
  53. 53.
    Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–969.  https://doi.org/10.1152/jn.1976.39.5.954 CrossRefGoogle Scholar
  54. 54.
    Ryu C, Jang DC, Jung D, Kim YG, Shim HG, Ryu H-H, Lee Y-S, Linden DJ, Worley PF, Kim SJ (2017) STIM1 regulates somatic Ca2+ signals and intrinsic firing properties of cerebellar Purkinje neurons. J Neurosci 37:8876–8894.  https://doi.org/10.1523/jneurosci.3973-16.2017 CrossRefGoogle Scholar
  55. 55.
    Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, Gao Z, Badura A, Ohtsuki G, Amerika WE, Hosy E, Hoebeek FE, Elgersma Y, Hansel C, De Zeeuw CI (2010) Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67:618–628.  https://doi.org/10.1016/j.neuron.2010.07.009 CrossRefGoogle Scholar
  56. 56.
    Schonewille M, Gao Z, Boele H-JJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50.  https://doi.org/10.1016/j.neuron.2011.02.044 CrossRefGoogle Scholar
  57. 57.
    Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T (1998) Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 18:5498–5507.  https://doi.org/10.1523/JNEUROSCI.18-14-05498.1998 CrossRefGoogle Scholar
  58. 58.
    Shim HG, Jang DC, Lee J, Chung G, Lee S, Kim YG, Jeon DE, Kim SJ (2017) Long-term depression of intrinsic excitability accompanied by synaptic depression in cerebellar Purkinje cells. J Neurosci 37:5659–5669.  https://doi.org/10.1523/jneurosci.3464-16.2017 CrossRefGoogle Scholar
  59. 59.
    Shim HG, Lee Y-S, Kim SJ (2018) The emerging concept of intrinsic plasticity: activity-dependent modulation of intrinsic excitability in cerebellar Purkinje cells and motor learning. Exp Neurobiol 27:139–154.  https://doi.org/10.5607/en.2018.27.3.139 CrossRefGoogle Scholar
  60. 60.
    Shutoh F, Katoh A, Kitazawa H, Aiba A, Itohara S, Nagao S (2002) Loss of adaptability of horizontal optokinetic response eye movements in mGluR1 knockout mice. Neurosci Res 42:141–145.  https://doi.org/10.1016/S0168-0102(01)00308-X CrossRefGoogle Scholar
  61. 61.
    Shutoh F, Katoh A, Ohki M, Itohara S, Tonegawa S, Nagao S (2003) Role of protein kinase C family in the cerebellum-dependent adaptive learning of horizontal optokinetic response eye movements in mice. Eur J Neurosci 18:134–142.  https://doi.org/10.1046/j.1460-9568.2003.02717.x CrossRefGoogle Scholar
  62. 62.
    Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S (2006) Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139:767–777.  https://doi.org/10.1016/j.neuroscience.2005.12.035 CrossRefGoogle Scholar
  63. 63.
    Telgkamp P, Raman IM (2002) Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J Neurosci 22:8447–8457CrossRefGoogle Scholar
  64. 64.
    Titley HK, Hansel C (2016) Asymmetries in cerebellar plasticity and motor learning. Cerebellum 15:87–92.  https://doi.org/10.1007/s12311-014-0635-7 CrossRefGoogle Scholar
  65. 65.
    Titley HK, Heskin-Sweezie R, Broussard DM (2010) The bidirectionality of motor learning in the vestibulo-ocular reflex is a function of cerebellar mGluR1 receptors. J Neurophysiol 104:3657–3666.  https://doi.org/10.1152/jn.00664.2010 CrossRefGoogle Scholar
  66. 66.
    Turecek J, Jackman SL, Regehr WG (2016) Synaptic specializations support frequency-independent Purkinje cell output from the cerebellar cortex. Cell Rep 17:3256–3268.  https://doi.org/10.1016/j.celrep.2016.11.081 CrossRefGoogle Scholar
  67. 67.
    Watanabe E (1984) Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res 297:169–174.  https://doi.org/10.1016/0006-8993(84)90555-9 CrossRefGoogle Scholar
  68. 68.
    Watanabe E (1985) Role of the primate flocculus in adaptation of the vestibulo-ocular reflex. Neurosci Res 3:20–38.  https://doi.org/10.1016/0168-0102(85)90036-7 CrossRefGoogle Scholar
  69. 69.
    Yamazaki T, Nagao S, Lennon W, Tanaka S (2015) Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc Natl Acad Sci U S A 112:3541–3546.  https://doi.org/10.1073/pnas.1413798112 CrossRefGoogle Scholar
  70. 70.
    Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900.  https://doi.org/10.1038/nrn1248 CrossRefGoogle Scholar
  71. 71.
    Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, Ruigrok TJ, Hoebeek FE, De Zeeuw CI, Schonewille M (2014) Cerebellar modules operate at different frequencies. Elife 3:e02536.  https://doi.org/10.7554/eLife.02536 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Brain and Cognitive Science, College of Natural ScienceSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of PhysiologySeoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Department of Biomedical ScienceSeoul National University College of MedicineSeoulRepublic of Korea
  4. 4.Neuroscience Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea

Personalised recommendations