Advertisement

Substrates and inhibitors of phosphate transporters: from experimental tools to pathophysiological relevance

  • Víctor Sorribas
  • Natalia Guillén
  • Cecilia Sosa
Invited Review
  • 42 Downloads

Abstract

The control of inorganic phosphate homeostasis is mediated through the activity of sodium-coupled Pi transporters located in the intestine, kidneys, and bone. To study these transporters in either the native tissue or after heterologous expression, it is very important to use specific inhibitors of the studied transporter, in order to know the corresponding relevance in the total Pi uptake and to differentiate from the activity of other transporters. Inhibitors are also necessary as drugs for treating Pi homeostasis disorders. Under normal physiological conditions, the renal and intestinal excretion of Pi matches dietary intestinal absorption, but when the number of non-functional nephrons increase in chronic kidney disease and end-stage renal disease, the excretion of surplus Pi is progressively impaired, thereby increasing the risk of hyperphosphatemia and Pi toxicity. When the compensatory mechanisms that increase Pi excretion fail, Pi toxicity can only be prevented by reducing the intestinal absorption of Pi through phosphate binders that reduced the free Pi concentration in the lumen, and inhibitors of intestinal Pi transporters and of the paracellular absorption route. Although many potentially interesting inhibitors have been reported to date, only a few are available for experimental purposes, and even fewer have been used in independent clinical trials. In this review, we summarize the different groups of compounds reported to date as inhibitors of Pi transport. To help understand and characterize the inhibition mechanisms, we also summarize the kinetic analysis approaches and screening methods that could be applied.

Keywords

Pi transport Inhibitors NaPi-IIa NaPi-IIb NaPi-IIc Pi homeostasis 

Notes

Funding information

This work has been supported by grant SAF2015-66705-P from the Spanish Ministry of Economy and Competitiveness to all the authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Andrini O, Ghezzi C, Murer H, Forster IC (2008) The leak mode of type II Na(+)-P(i) cotransporters. Channels (Austin) 2:346–357CrossRefGoogle Scholar
  2. 2.
    Atkins GL (1983) A comparison of methods for estimating the kinetic parameters of two simple types of transport process. Biochim Biophys Acta 732:455–463.  https://doi.org/10.1016/0005-2736(83)90062-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Becker BN, Schulman G (1996) Nephrotoxicity of antiviral therapies. Curr Opin Nephrol Hypertens 5:375–379CrossRefPubMedGoogle Scholar
  4. 4.
    Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359.  https://doi.org/10.1146/annurev.physiol.69.040705.141729 CrossRefPubMedGoogle Scholar
  5. 5.
    Berndt TJ, Pfeifer JD, Knox FG, Kempson SA, Dousa TP (1982) Nicotinamide restores phosphaturic effect of PTH and calcitonin in phosphate deprivation. Am J Phys 242:F447–F452Google Scholar
  6. 6.
    Berner W, Kinne R, Murer H (1976) Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J 160:467–474CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Åstrand M, Johansson S, Knutsson M, Langkilde AM, Chertow GM (2017) Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J Am Soc Nephrol 28:1933–1942.  https://doi.org/10.1681/ASN.2016080855 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Block GA, Rosenbaum DP, Yan A, Greasley PJ, Chertow GM, Wolf M (2018) The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol Dial Transplant doi: https://doi.org/10.1093/ndt/gfy061
  9. 9.
    Brot-Laroche E, Dao MT, Alcalde AI, Delhomme B, Triadou N, Alvarado F (1988) Independent modulation by food supply of two distinct sodium-activated d-glucose transport systems in the Guinea pig jejunal brush-border membrane. Proc Natl Acad Sci U S A 85:6370–6373CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Busch AE, Wagner CA, Schuster A, Waldegger S, Biber J, Murer H, Lang F (1995) Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 6:1547–1551PubMedGoogle Scholar
  11. 11.
    Campbell PI, Abraham MI, Kempson SA (1989) Increased cAMP in proximal tubules is acute effect of nicotinamide analogues. Am J Phys 257:F1021–F1026.  https://doi.org/10.1152/ajprenal.1989.257.6.F1021 CrossRefGoogle Scholar
  12. 12.
    Candeal E, CaldasYA GN, Levi M, Sorribas V (2017) Intestinal phosphate absorption is mediated by multiple transport systems in rats. Am J Physiol Gastrointest Liver Physiol 312:G355–G366.  https://doi.org/10.1152/ajpgi.00244.2016 CrossRefPubMedGoogle Scholar
  13. 13.
    Carfagna F, Del Vecchio L, Pontoriero G, Locatelli F (2018) Current and potential treatment options for hyperphosphatemia. Expert Opin Drug Saf 17(6):597–607.  https://doi.org/10.1080/14740338.2018.1476487 CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108.  https://doi.org/10.1016/0006-2952(73)90196-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Christensen HN (1975) Biological transport. W.A. Benjamin, Inc., MassachusettsGoogle Scholar
  16. 16.
    Eto N, Miyata Y, Ohno H, Yamashita T (2005) Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dial Transplant 20:1378–1384.  https://doi.org/10.1093/ndt/gfh781 CrossRefGoogle Scholar
  17. 17.
    Fardel O, Le Vee M, Jouan E, Denizot C, Parmentier Y (2015) Nature and uses of fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 11:1233–1251.  https://doi.org/10.1517/17425255.2015.1053462 CrossRefPubMedGoogle Scholar
  18. 18.
    Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217.  https://doi.org/10.1038/nrneph.2010.17 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Filipski KJ, Sammons MF, Bhattacharya SK, Panteleev J, Brown JA, Loria PM, Boehm M, Smith AC, Shavnya A, Conn EL, Song K, Weng Y, Facemire C, Jüppner H, Clerin V (2018) Discovery of orally bioavailable selective inhibitors of the sodium-phosphate cotransporter NaPi2a (SLC34A1). ACS Med Chem Lett 9:440–445.  https://doi.org/10.1021/acsmedchemlett.8b00013 CrossRefPubMedGoogle Scholar
  20. 20.
    Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18.  https://doi.org/10.1085/jgp.112.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Forster IC, Hernando N, Biber J, Murer H (2012) Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr 70:313–356.  https://doi.org/10.1016/B978-0-12-394316-3.00010-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Fuhrmann GF, Völker B (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Biochim Biophys Acta 1145:180–182.  https://doi.org/10.1016/0005-2736(93)90396-H CrossRefPubMedGoogle Scholar
  23. 23.
    Ginsberg C, Ix JH (2016) Nicotinamide and phosphate homeostasis in chronic kidney disease. Curr Opin Nephrol Hypertens 25:285–291.  https://doi.org/10.1097/MNH.0000000000000236 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Herrero-Foncubierta P, Paredes JM, Giron MD, Salto R, Cuerva JM, Miguel D, Orte A (2018) A red-emitting, multidimensional sensor for the simultaneous cellular imaging of biothiols and phosphate ions. Sensors (Basel) 18:E161.  https://doi.org/10.3390/s18010161 CrossRefGoogle Scholar
  25. 25.
    Hoffmann N, Thees M, Kinne R (1976) Phosphate transport by isolated renal brush border vesicles. Pflugers Arch 362:147–156CrossRefPubMedGoogle Scholar
  26. 26.
    Hokin LE, Hokin MR (1963) Biological transport. Annu Rev Biochem 32:553–578.  https://doi.org/10.1146/annurev.bi.32.070163.003005 CrossRefPubMedGoogle Scholar
  27. 27.
    Katai K, Tanaka H, Tatsumi S, Fukunaga Y, Genjida K, Morita K, Kuboyama N, Suzuki T, Akiba T, Miyamoto K, Takeda E (1999) Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol Dial Transplant 14:1195–1201.  https://doi.org/10.1093/ndt/14.5.1195 CrossRefGoogle Scholar
  28. 28.
    Kempson SA, Colon-Otero G, Ou SY, Turner ST, Dousa TP (1981) Possible role of nicotinamide dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J Clin Invest 67:1347–1360.  https://doi.org/10.1172/JCI110163 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kempson SA, Turner ST, Yusufi AN, Dousa TP (1985) Actions of NAD+ on renal brush border transport of phosphate in vivo and in vitro. Am J Phys 249:F948–F955.  https://doi.org/10.1152/ajprenal.1985.249.6.F948 CrossRefGoogle Scholar
  30. 30.
    King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS (2018) Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10:eaam6474.  https://doi.org/10.1126/scitranslmed.aam6474 CrossRefGoogle Scholar
  31. 31.
    Labonté ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Dy E, Black D, Zhong Z, Langsetmo I, Spencer AG, Bell N, Deshpande D, Navre M, Lewis JG, Jacobs JW, Charmot D (2015) Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J Am Soc Nephrol 26:1138–1149.  https://doi.org/10.1681/ASN.2014030317 CrossRefPubMedGoogle Scholar
  32. 32.
    Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35:1515–1525.  https://doi.org/10.1093/eurheartj/ehu163 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Larsson TE, Kameoka C, Nakajo I, Taniuchi Y, Yoshida S, Akizawa T, Smulders RA (2018) NPT-IIb inhibition does not improve hyperphosphatemia in CKD. Kidney Int Rep 3:73–80.  https://doi.org/10.1016/j.ekir.2017.08.003 CrossRefGoogle Scholar
  34. 34.
    Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458.  https://doi.org/10.1016/0968-0004(90)90295-M CrossRefPubMedGoogle Scholar
  35. 35.
    Loghman-Adham M, Dousa TP (1992) Dual action of phosphonoformic acid on Na(+)-phosphate cotransport in opossum kidney cells. Am J Phys 263:F301–F310Google Scholar
  36. 36.
    Loghman-Adham M, Motock GT (1996) Use of phosphonoformic acid to induce phosphaturia in chronic renal failure in rats. Ren Fail 18:855–866.  https://doi.org/10.3109/08860229609047712 CrossRefPubMedGoogle Scholar
  37. 37.
    Loghman-Adham M, Szczepanska-Konkel M, Yusufi AN, Van Scoy M, Dousa TP (1987) Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids. Am J Phys 252:G244–G249.  https://doi.org/10.1152/ajprenal.1992.263.2.F301 CrossRefGoogle Scholar
  38. 38.
    Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci 90:5979–5983.  https://doi.org/10.1073/pnas.90.13.5979 CrossRefPubMedGoogle Scholar
  39. 39.
    Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ (2015) Experimental and regional variations in Na+−dependent and Na+−independent phosphate transport along the rat small intestine and colon. Phys Rep 3:e12281.  https://doi.org/10.14814/phy2.12281 CrossRefGoogle Scholar
  40. 40.
    Matsuo A, Negoro T, Seo T, Kitao Y, Shindo M, Segawa H, Miyamoto K (2005) Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo. Eur J Pharmacol 517:111–119CrossRefPubMedGoogle Scholar
  41. 41.
    Miyagawa A, Tatsumi S, Takahama W, Fujii O, Nagamoto K, Kinoshita E, Nomura K, Ikuta K, Fujii T, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI (2018) The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int 93:1073–1085.  https://doi.org/10.1016/j.kint.2017.11.022 CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Oberg B (1982) Antiviral effects of phosphonoformate (PFA, foscarnet sodium). Pharmacol Ther 19:387–415.  https://doi.org/10.1016/0163-7258(82)90074-2 CrossRefPubMedGoogle Scholar
  44. 44.
    Paredes JM, Giron MD, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Salto R, Alvarez-Pez JM (2013) Real-time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM). J Phys Chem B 117:8143–8149.  https://doi.org/10.1021/jp405041c CrossRefPubMedGoogle Scholar
  45. 45.
    Peerce BE, Clarke R (2002) A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na+-dependent phosphate absorption. Am J Physiol Gastrointest Liver Physiol 283:G848–G855.  https://doi.org/10.1152/ajpgi.00308.2001 CrossRefPubMedGoogle Scholar
  46. 46.
    Peerce BE, Fleming RY, Clarke RD (2003) Inhibition of human intestinal brush border membrane vesicle Na+−dependent phosphate uptake by phosphophloretin derivatives. Biochem Biophys Res Commun 301:8–12.  https://doi.org/10.1016/S0006-291X(02)02974-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Peerce BE, Peerce B, Clarke RD (2004a) Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia. Am J Physiol Ren Physiol 286:F955–F964.  https://doi.org/10.1152/ajprenal.00245.2003 CrossRefGoogle Scholar
  48. 48.
    Peerce BE, Weaver L, Clarke RD (2004b) Effect of 2′-phosphophloretin on renal function in chronic renal failure rats. Am J Physiol Ren Physiol 287:F48–F56CrossRefGoogle Scholar
  49. 49.
    Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Phys Cell Phys 293:C606–C620.  https://doi.org/10.1152/ajpcell.00064.2007 CrossRefGoogle Scholar
  50. 50.
    Robinson JWL, van Melle G, Johansen S (1983) Statistical analysis of solute influx kinetics. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Proceedings in life sciences. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-69109-6_5 CrossRefGoogle Scholar
  51. 51.
    Shobeiri N, Adams MA, Holden RM (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 77:39–54.  https://doi.org/10.1111/bcp.12117 CrossRefPubMedGoogle Scholar
  52. 52.
    Sorribas V (2017) Slc20. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York, NY.  https://doi.org/10.1007/978-1-4614-6438-9_101880-1 CrossRefGoogle Scholar
  53. 53.
    Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Bell N, Tabora J, Joly KM, Navre M, Jacobs JW, Charmot D (2014) Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med 6:227ra36.  https://doi.org/10.1126/scitranslmed.3007790 CrossRefPubMedGoogle Scholar
  54. 54.
    Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP (1986) Phosphonocarboxylic acids as specific inhibitors of Na+−dependent transport of phosphate across renal brush border membrane. J Biol Chem 261:6375–6383PubMedGoogle Scholar
  55. 55.
    Taniguchi K, Terai K, Terada Y, Tomura Y (2015) Novel NaPi-IIb inhibitor ASP3325 inhibits phosphate absorption in intestine and reduces plasma phosphorus level in rats with renal failure. J Am Soc Nephrol 582A:FR-PO936Google Scholar
  56. 56.
    VanScoy M, Loghman-Adham M, Onsgard M, Szczepanska-Konkel M, Homma S, Knox FG, Dousa TP (1988) Mechanism of phosphaturia elicited by administration of phosphonoformate in vivo. Am J Phys 255:F984–F994.  https://doi.org/10.1152/ajprenal.1988.255.5.F984 CrossRefGoogle Scholar
  57. 57.
    Villa-Bellosta R, Sorribas V (2008) Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol 232:125–134.  https://doi.org/10.1016/j.taap.2008.05.026 CrossRefPubMedGoogle Scholar
  58. 58.
    Villa-Bellosta R, Sorribas V (2009) Different effects of arsenate and phosphonoformate on P(i) transport adaptation in opossum kidney cells. Am J Phys Cell Phys 297:C516–C525.  https://doi.org/10.1152/ajpcell.00186.2009 CrossRefGoogle Scholar
  59. 59.
    Villa-Bellosta R, Sorribas V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247:36–40.  https://doi.org/10.1016/j.taap.2010.05.012 CrossRefPubMedGoogle Scholar
  60. 60.
    Villa-Bellosta R, Bogaert YE, Levi M, Sorribas V (2007) Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification. Arterioscler Thromb Vasc Biol 27:1030–1036.  https://doi.org/10.1161/ATVBAHA.106.132266 CrossRefPubMedGoogle Scholar
  61. 61.
    Virkki LV, Forster IC, Biber J, Murer H (2005) Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Am J Physiol Ren Physiol 288:F969–F981.  https://doi.org/10.1152/ajprenal.00293.2004 CrossRefGoogle Scholar
  62. 62.
    Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintáns B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256.  https://doi.org/10.1038/ng.1077 CrossRefPubMedGoogle Scholar
  63. 63.
    Weinstock J (2004) Inhibitors of sodium-dependent phosphate transport. Expert Opin Ther Patents 14:81–84.  https://doi.org/10.1517/13543776.14.1.81 CrossRefGoogle Scholar
  64. 64.
    Yusufi AN, Szczepanska-Konkel M, Kempson SA, McAteer JA, Dousa TP (1986) Inhibition of human renal epithelial Na+/Pi cotransport by phosphonoformic acid. Biochem Biophys Res Commun 139:679–686.  https://doi.org/10.1016/S0006-291X(86)80044-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Toxicology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain

Personalised recommendations