Advertisement

Modulation of K+ channel N-type inactivation by sulfhydration through hydrogen sulfide and polysulfides

  • Kefan Yang
  • Ina Coburger
  • Johanna M. Langner
  • Nicole Peter
  • Toshinori Hoshi
  • Roland Schönherr
  • Stefan H. Heinemann
Ion channels, receptors and transporters
  • 58 Downloads
Part of the following topical collections:
  1. Ion channels, receptors and transporters

Abstract

Fast N-type inactivation of voltage-gated K+ (Kv) channels is important in fine-tuning of cellular excitability. To serve diverse cellular needs, N-type inactivation is regulated by numerous mechanisms. Here, we address how reactive sulfur species—the gaseous messenger H2S and polysulfides—affect N-type inactivation of the mammalian Kv channels Kv1.4 and Kv3.4. In both channels, the H2S donor NaHS slowed down inactivation with varying potency depending on the “aging” of NaHS solution. Polysulfides were > 1000 times more effective than NaHS with the potency increasing with the number of sulfur atoms (Na2S2 < Na2S3 < Na2S4). In Kv1.4, C13 in the N-terminal ball domain mediates the slowing of inactivation. In recombinant protein exposed to NaHS or Na2S4, a sulfur atom is incorporated at C13 in the protein. In Kv3.4, the N terminus harbors two cysteine residues (C6, C24), and C6 is of primary importance for channel regulation by H2S and polysulfides, with a minor contribution from C24. To fully eliminate the dependence of N-type inactivation on sulfhydration, both cysteine residues must be removed (C6S:C24S). Sulfhydration of a single cysteine residue in the ball-and-chain domain modulates the speed of inactivation but does not remove it entirely. In both Kv1.4 and Kv3.4, polysulfides affected the N-terminal cysteine residues when assayed in the whole-cell configuration; on-cell recordings confirmed that polysulfides also modulate K+ channel inactivation with undisturbed cytosol. These findings have collectively identified reactive sulfur species as potent modulators of N-type inactivation in mammalian Kv channels.

Keywords

Hydrogen sulfide Sulfhydration K+ channel inactivation KcnaKcncReactive sulfur species 

Abbreviations

AP

action potential

DRG

dorsal root ganglion

DTT

dithiothreitol

H2S

hydrogen sulfide

Kv

voltage-gated potassium channel

NaHS

sodium hydrogen sulfide

RNS

reactive nitrogen species

ROS

reactive oxygen species

roGFP2

reduction-oxidation sensitive green fluorescent protein 2

RSS

reactive sulfur species

wt

wild type

Notes

Acknowledgments

We thank Dr. Ilka Wittig (Frankfurt, Germany) for helpful comments on the mass spectrometry experiment.

Funding

This work was supported by grants of the German Research Foundation RTG 1715 and RTG 2155 (ProMoAge) (S.H.H.). T.H. was supported in part by the National Institutes of Health grant GM121375.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Supplementary material

424_2018_2233_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 4029 kb)

References

  1. 1.
    Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441.  https://doi.org/10.1038/306436a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Antz C, Bauer T, Kalbacher H, Frank R, Covarrubias M, Kalbitzer HR, Ruppersberg JP, Baukrowitz T, Fakler B (1999) Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat Struct Biol 6:146–150.  https://doi.org/10.1038/5833 CrossRefPubMedGoogle Scholar
  3. 3.
    Antz C, Geyer M, Fakler B, Schott MK, Guy HR, Frank R, Ruppersberg JP, Kalbitzer HR (1997) NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385:272–275.  https://doi.org/10.1038/385272a0 CrossRefPubMedGoogle Scholar
  4. 4.
    Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448.  https://doi.org/10.3389/fphys.2012.00448 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Carrasquillo Y, Nerbonne JM (2014) IA channels: diverse regulatory mechanisms. Neuroscientist 20:104–111.  https://doi.org/10.1177/1073858413504003 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen J, Daggett H, De Waard M, Heinemann SH, Hoshi T (2002) Nitric oxide augments voltage-gated P/Q-type Ca(2+) channels constituting a putative positive feedback loop. Free Radic Biol Med 32:638–649CrossRefGoogle Scholar
  7. 7.
    Claydon TW, Boyett MR, Sivaprasadarao A, Ishii K, Owen JM, O'Beirne HA, Leach R, Komukai K, Orchard CH (2000) Inhibition of the K+ channel kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J Physiol 526(Pt 2):253–264.  https://doi.org/10.1111/j.1469-7793.2000.00253.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cuevasanta E, Moller MN, Alvarez B (2017) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617:9–25.  https://doi.org/10.1016/j.abb.2016.09.018 CrossRefPubMedGoogle Scholar
  9. 9.
    Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1997) Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389:286–289.  https://doi.org/10.1038/38502 CrossRefPubMedGoogle Scholar
  10. 10.
    Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293.  https://doi.org/10.1074/jbc.M312847200 CrossRefPubMedGoogle Scholar
  11. 11.
    Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A 92:11796–11800CrossRefGoogle Scholar
  12. 12.
    Feng X, Zhou YL, Meng X, Qi FH, Chen W, Jiang X, Xu GY (2013) Hydrogen sulfide increases excitability through suppression of sustained potassium channel currents of rat trigeminal ganglion neurons. Mol Pain 9:4.  https://doi.org/10.1186/1744-8069-9-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fernandez FR, Morales E, Rashid AJ, Dunn RJ, Turner RW (2003) Inactivation of Kv3.3 potassium channels in heterologous expression systems. J Biol Chem 278:40890–40898CrossRefGoogle Scholar
  14. 14.
    Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Phys Regul Integr Comp Phys 295:R1479–R1485.  https://doi.org/10.1152/ajpregu.90566.2008 CrossRefGoogle Scholar
  15. 15.
    Gamper N, Ooi L (2015) Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 22:486–504.  https://doi.org/10.1089/ars.2014.5884 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765.  https://doi.org/10.1089/ars.2012.5041 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hollerer-Beitz G, Schonherr R, Koenen M, Heinemann SH (1999) N-terminal deletions of rKv1.4 channels affect the voltage dependence of channel availability. Pflugers Arch 438:141–146.  https://doi.org/10.1007/s004240050891 CrossRefPubMedGoogle Scholar
  18. 18.
    Hsieh CP (2008) Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons. Biochem Biophys Res Commun 370:445–449.  https://doi.org/10.1016/j.bbrc.2008.03.097 CrossRefPubMedGoogle Scholar
  19. 19.
    Iciek M, Kowalczyk-Pachel D, Bilska-Wilkosz A, Kwiecien I, Gorny M, Wlodek L (2015) S-sulfhydration as a cellular redox regulation. Biosci Rep 36:e00304.  https://doi.org/10.1042/BSR20150147 CrossRefPubMedGoogle Scholar
  20. 20.
    Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7606–7611.  https://doi.org/10.1073/pnas.1321232111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133.  https://doi.org/10.1006/bbrc.1999.1915 CrossRefPubMedGoogle Scholar
  22. 22.
    Kimura H (2015) Hydrogen sulfide and polysulfides as signaling molecules. Proc Jpn Acad Ser B Phys Biol Sci 91:131–159.  https://doi.org/10.2183/pjab.91.131 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kimura H (2017) Hydrogen sulfide and polysulfide signaling. Antioxid Redox Signal 27:619–621.  https://doi.org/10.1089/ars.2017.7076 CrossRefPubMedGoogle Scholar
  24. 24.
    Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457.  https://doi.org/10.1096/fj.12-226415 CrossRefPubMedGoogle Scholar
  25. 25.
    Kurata HT, Fedida D (2006) A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol 92:185–208.  https://doi.org/10.1016/j.pbiomolbio.2005.10.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187.  https://doi.org/10.1146/annurev-pharmtox-010510-100505 CrossRefPubMedGoogle Scholar
  27. 27.
    Luc R, Vergely C (2008) Forgotten radicals in biology. Int J Biomed Sci 4:255–259PubMedPubMedCentralGoogle Scholar
  28. 28.
    Miranda KM, Wink DA (2014) Persulfides and the cellular thiol landscape. Proc Natl Acad Sci U S A 111:7505–7506.  https://doi.org/10.1073/pnas.1405665111 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moustafa A, Habara Y (2014) Hydrogen sulfide regulates Ca(2+) homeostasis mediated by concomitantly produced nitric oxide via a novel synergistic pathway in exocrine pancreas. Antioxid Redox Signal 20:747–758.  https://doi.org/10.1089/ars.2012.5108 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72.  https://doi.org/10.1126/scisignal.2000464 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268.  https://doi.org/10.1161/CIRCRESAHA.111.240242 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270.  https://doi.org/10.1126/science.1094113 CrossRefPubMedGoogle Scholar
  33. 33.
    Padanilam BJ, Lu T, Hoshi T, Padanilam BA, Shibata EF, Lee HC (2002) Molecular determinants of intracellular pH modulation of human Kv1.4 N-type inactivation. Mol Pharmacol 62:127–134CrossRefGoogle Scholar
  34. 34.
    Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17:95–105.  https://doi.org/10.1089/ars.2011.4359 CrossRefPubMedGoogle Scholar
  35. 35.
    Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17:3379–3391CrossRefGoogle Scholar
  36. 36.
    Ruppersberg JP, Stocker M, Pongs O, Heinemann SH, Frank R, Koenen M (1991) Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714.  https://doi.org/10.1038/352711a0 CrossRefPubMedGoogle Scholar
  37. 37.
    Sahoo N, Goradia N, Ohlenschlager O, Schonherr R, Friedrich M, Plass W, Kappl R, Hoshi T, Heinemann SH (2013) Heme impairs the ball-and-chain inactivation of potassium channels. Proc Natl Acad Sci U S A 110:E4036–E4044.  https://doi.org/10.1073/pnas.1313247110 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sahoo N, Hoshi T, Heinemann SH (2014) Oxidative modulation of voltage-gated potassium channels. Antioxid Redox Signal 21:933–952.  https://doi.org/10.1089/ars.2013.5614 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shen X, Peter EA, Bir S, Wang R, Kevil CG (2012) Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med 52:2276–2283.  https://doi.org/10.1016/j.freeradbiomed.2012.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366.  https://doi.org/10.1038/ncomms2371 CrossRefPubMedGoogle Scholar
  41. 41.
    Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763.  https://doi.org/10.1111/j.1440-1681.2010.05351.x CrossRefPubMedGoogle Scholar
  42. 42.
    Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 413:1–7.  https://doi.org/10.1016/j.ab.2011.01.044 CrossRefPubMedGoogle Scholar
  43. 43.
    Wallace JL, Wang R (2015) Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14:329–345.  https://doi.org/10.1038/nrd4433 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896.  https://doi.org/10.1152/physrev.00017.2011 CrossRefPubMedGoogle Scholar
  45. 45.
    Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062.  https://doi.org/10.1113/jphysiol.2011.206706 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561.  https://doi.org/10.1016/j.freeradbiomed.2008.05.004 CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang L, Li S, Hong M, Xu Y, Wang S, Liu Y, Qian Y, Zhao J (2014) A colorimetric and ratiometric fluorescent probe for the imaging of endogenous hydrogen sulphide in living cells and sulphide determination in mouse hippocampus. Org Biomol Chem 12:5115–5125.  https://doi.org/10.1039/c4ob00285g CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang LJ, Tao BB, Wang MJ, Jin HM, Zhu YC (2012) PI3K p110alpha isoform-dependent Rho GTPase Rac1 activation mediates H2S-promoted endothelial cell migration via actin cytoskeleton reorganization. PLoS One 7:e44590.  https://doi.org/10.1371/journal.pone.0044590 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang Z, Huang H, Liu P, Tang C, Wang J (2007) Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K ATP channels. Can J Physiol Pharmacol 85:1248–1253.  https://doi.org/10.1139/Y07-120 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalJenaGermany
  2. 2.Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations