Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 11, pp 1647–1657 | Cite as

GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy

  • Stefan J. SchallerEmail author
  • Michio Nagashima
  • Martin Schönfelder
  • Tomoki Sasakawa
  • Fabian Schulz
  • Mohammed A. S. Khan
  • William R. Kem
  • Gerhard Schneider
  • Jürgen Schlegel
  • Heidrun Lewald
  • Manfred Blobner
  • J. A. Jeevendra Martyn
Muscle physiology
Part of the following topical collections:
  1. Muscle physiology


Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.


3-(2,4-dimethoxybenzylidene)anabaseine Critical care DMXB Muscular disorders Atrophic Muscle weakness 



The authors would like to thank Univ. Prof. Dr. med., Dipl.-Phys. Eberhard Kochs for his continued scientific advice and support and the following collaborators for their technical assistance: Sandra Baur, Andreas Blaschke, Nina Bayer, Anna Folz, Eva Nuspl (all from Klinikum rechts der Isar, Technical University of Munich, Germany).


Support in Munich, Germany, was provided solely from institutional and/or departmental sources. Jeevendra Martyn was supported in part by grants from the National Institutes of Health, Bethesda, MD (P50-GM21500, Project I, and RO1-GM 118947) and grants from Shriners Hospitals for Children®—Tampa, FL.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This animal study was approved by the institutional review board (Subcommittee on Research Animal Care, Committee on Research, Massachusetts General Hospital, #2010N000168).


  1. 1.
    Blobner M, Kochs E, Fink H, Mayer B, Veihelmann A, Brill T, Stadler J (1999) Pharmacokinetics and pharmacodynamics of vecuronium in rats with systemic inflammatory response syndrome: treatment with NG-monomethyl-L-arginine. Anesthesiology 91:999–1005CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M, Holladay MW, Hui YH, Jackson WJ, Kim DJ, Marsh KC, O'Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Buras JA, Holzmann B, Sitkovsky M (2005) Animal models of sepsis: setting the stage. Nat Rev Drug Discov 4:854–865CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Casaer MP (2015) Muscle weakness and nutrition therapy in ICU. Curr Opin Clin Nutr Metab Care 18:162–168CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Choi L, Ferrell BA, Vasilevskis EE, Pandharipande PP, Heltsley R, Ely EW, Stein CM, Girard TD (2016) Population pharmacokinetics of fentanyl in the critically ill. Crit Care Med 44:64–72CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Conejero-Goldberg C, Davies P, Ulloa L (2008) Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev 32:693–706CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB (2014) The time-dependent expression of alpha7nAChR during skeletal muscle wound healing in rats. Int J Legal Med 128:779–786CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fink H, Bogdanski R, Luppa P, Martyn JA, Blobner M (2005) Nitric oxide is not a mediator of inflammation-induced resistance to atracurium. Anesth Analg 101:1362–1367CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fink H, Helming M, Unterbuchner C, Lenz A, Neff F, Martyn JA, Blobner M (2008) Systemic inflammatory response syndrome increases immobility-induced neuromuscular weakness. Crit Care Med 36:910–916CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fink H, Luppa P, Mayer B, Rosenbrock H, Metzger J, Martyn JA, Blobner M (2003) Systemic inflammation leads to resistance to atracurium without increasing membrane expression of acetylcholine receptors. Anesthesiology 98:82–88CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165:1040–1047CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Frick CG, Helming M, Martyn JA, Blobner M, Fink H (2010) Continuous administration of pyridostigmine improves immobilization-induced neuromuscular weakness. Crit Care Med 38:922–927CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L (2015) The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev 95:1025–1109CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 11:549–560CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gilda JE, Gomes AV (2015) Western blotting using in-gel protein labeling as a normalization control: stain-free technology. Methods Mol Biol 1295:381–391CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Gurtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, Kohn JE, Posch A (2013) Stain-free technology as a normalization tool in western blot analysis. Anal Biochem 433:105–111CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Han T, Harmatz JS, Greenblatt DJ, Martyn JA (2007) Fentanyl clearance and volume of distribution are increased in patients with major burns. J Clin Pharmacol 47:674–680CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Han TH, Greenblatt DJ, Martyn JA (2009) Propofol clearance and volume of distribution are increased in patients with major burns. J Clin Pharmacol 49:768–772CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Herencia F, Lopez-Garcia MP, Ubeda A, Ferrandiz ML (2002) Nitric oxide-scavenging properties of some chalcone derivatives. Nitric Oxide 6:242–246CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian critical care trials G (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM, Canadian critical care trials G (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hirose M, Kaneki M, Sugita H, Yasuhara S, Ibebunjo C, Martyn JA (2001) Long-term denervation impairs insulin receptor substrate-1-mediated insulin signaling in skeletal muscle. Metabolism 50:216–222CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hirose M, Kaneki M, Sugita H, Yasuhara S, Martyn JA (2000) Immobilization depresses insulin signaling in skeletal muscle. Am J Physiol Endocrinol Metab 279:E1235–E1241CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jiang S, Gavrikova TA, Sharifov OF, Messina JL (2012) Role of tissue macrophages in the development of critical illness diabetes. Shock 37:70–76CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kalashnyk O, Lykhmus O, Oliinyk O, Komisarenko S, Skok M (2014) α7 Nicotinic acetylcholine receptor-specific antibody stimulates interleukin-6 production in human astrocytes through p38-dependent pathway. Int Immunopharmacol 23:475–479CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kashiwagi S, Khan MA, Yasuhara S, Goto T, Kem WR, Tompkins RG, Kaneki M, Martyn JA (2017) Prevention of burn-induced inflammatory responses and muscle wasting by GTS-21, a specific agonist for alpha7 nicotinic acetylcholine receptors. Shock 47:61–69CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kem W, Soti F, Wildeboer K, LeFrancois S, MacDougall K, Wei D-Q, Chou K-C, Arias HR (2006) The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): chemical and pharmacological properties. Marine Drugs 4:255–273CrossRefGoogle Scholar
  28. 28.
    Kem WR (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav Brain Res 113:169–181CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kem WR, Olincy A, Johnson L, Harris J, Wagner BD, Buchanan RW, Christians U, Freedman R (2017) Pharmacokinetic limitations on effects of an alpha7-nicotinic receptor agonist in schizophrenia: randomized trial with an extended-release formulation. NeuropsychopharmacologyGoogle Scholar
  30. 30.
    Khan MA, Farkhondeh M, Crombie J, Jacobson L, Kaneki M, Martyn JA (2012) Lipopolysaccharide upregulates alpha7 acetylcholine receptors: stimulation with GTS-21 mitigates growth arrest of macrophages and improves survival in burned mice. Shock 38:213–219CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Khan MA, Khan MF, Kashiwagi S, Kem WR, Yasuhara S, Kaneki M, Tompkins RG, Martyn JA (2017) An alpha7 nicotinic acetylcholine receptor agonist (GTS-21) promotes C2C12 Myonuclear accretion in association with release of Interleukin-6 (IL-6) and improves survival in burned mice. Shock 48:227–235CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Khan MA, Sahani N, Neville KA, Nagashima M, Lee S, Sasakawa T, Kaneki M, Martyn JA (2014) Nonsurgically induced disuse muscle atrophy and neuromuscular dysfunction upregulates alpha7 acetylcholine receptors. Can J Physiol Pharmacol 92:1–8CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kox M, Pompe JC, Gordinou de Gouberville MC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) Effects of the alpha7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock 36:5–11CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kox M, Pompe JC, Peters E, Vaneker M, van der Laak JW, van der Hoeven JG, Scheffer GJ, Hoedemaekers CW, Pickkers P (2011) alpha7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-alpha production and lung injury. Br J Anaesth 107:559–566CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kox M, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) Influence of different breathing patterns on heart rate variability indices and reproducibility during experimental endotoxaemia in human subjects. Clin Sci (Lond) 121:215–222CrossRefGoogle Scholar
  37. 37.
    Kress JP, Hall JB (2014) ICU-acquired weakness and recovery from critical illness. N Engl J Med 370:1626–1635CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Langhans C, Weber-Carstens S, Schmidt F, Hamati J, Kny M, Zhu X, Wollersheim T, Koch S, Krebs M, Schulz H, Lodka D, Saar K, Labeit S, Spies C, Hubner N, Spranger J, Spuler S, Boschmann M, Dittmar G, Butler-Browne G, Mouly V, Fielitz J (2014) Inflammation-induced acute phase response in skeletal muscle and critical illness myopathy. PLoS One 9:e92048CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Latronico N, Guarneri B (2008) Critical illness myopathy and neuropathy. Minerva Anestesiol 74:319–323PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lee RH, Vazquez G (2013) Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages. Physiological reports 1:e00189CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lee S, Yang HS, Sasakawa T, Khan MA, Khatri A, Kaneki M, Martyn JA (2014) Immobilization with atrophy induces de novo expression of neuronal nicotinic alpha7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology 120:76–85CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Liu L, Min S, Li W, Wei K, Luo J, Wu G, Ao L, Cao J, Wang B, Wang Z (2014) Pharmacodynamic changes with vecuronium in sepsis are associated with expression of alpha7- and gamma-nicotinic acetylcholine receptor in an experimental rat model of neuromyopathy. Br J Anaesth 112:159–168CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Maldifassi MC, Atienza G, Arnalich F, Lopez-Collazo E, Cedillo JL, Martin-Sanchez C, Bordas A, Renart J, Montiel C (2014) A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via alpha7 nicotinic receptors in human macrophages. PLoS One 9:e108397CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Martyn JA, Fagerlund MJ, Eriksson LI (2009) Basic principles of neuromuscular transmission. Anaesthesia 64(Suppl 1):1–9CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mayer B, Fink H, Bogdanski R, Stadler J, Blobner M (2001) Inflammatory liver disease shortens atracurium-induced neuromuscular blockade in rats. Eur J Anaesthesiol 18:599–604CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Metcalf K, Jungersten L, Lisander B (2002) Effective inhibition of nitric oxide production by aminoguanidine does not reverse hypotension in endotoxaemic rats. Acta Anaesthesiol Scand 46:17–23CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM (1997) 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768:49–56CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mondello P, Mian M, Aloisi C, Fama F, Mondello S, Pitini V (2015) Cancer cachexia syndrome: pathogenesis, diagnosis, and new therapeutic options. Nutr Cancer 67:12–26CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63:630–638CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Osta WA, El-Osta MA, Pezhman EA, Raad RA, Ferguson K, McKelvey GM, Marsh HM, White M, Perov S (2010) Nicotinic acetylcholine receptor gene expression is altered in burn patients. Anesth Analg 110:1355–1359CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P (2008) Experimental models of sepsis and their clinical relevance. Shock 30(Suppl 1):53–59CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Padhke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SDR, Hart N, Montgomery HE (2013) Acute skeletal muscle wasting in critical illness. JAMA - J Am Med Assoc 310:1591–1600CrossRefGoogle Scholar
  54. 54.
    Rivero-Gutierrez B, Anzola A, Martinez-Augustin O, de Medina FS (2014) Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in western blotting. Anal Biochem 467:1–3CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, Heim M, Houle T, Kurth T, Latronico N, Lee J, Meyer MJ, Peponis T, Talmor D, Velmahos GC, Waak K, Walz JM, Zafonte R, Eikermann M, International early S-gMRI (2016) Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388:1377–1388CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Stauble CG, Helming M, Martyn JA, Blobner M, Fink H (2016) Neuromuscular recovery is prolonged after immobilization or superimposition of inflammation with immobilization compared to inflammation alone: data from a preclinical model. Crit Care Med 44:e1097–e1110CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM (2007) Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med 33:1876–1891CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Liu M, Li SS, Zhang MZ, Guan DW (2015) alpha7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats. J Mol Histol 46:499–509CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tsuneki H, Salas R, Dani JA (2003) Mouse muscle denervation increases expression of an alpha7 nicotinic receptor with unusual pharmacology. J Physiol 547:169–179CrossRefPubMedCentralGoogle Scholar
  61. 61.
    van Haaren F, Anderson KG, Haworth SC, Kem WR (1999) GTS-21, a mixed nicotinic receptor agonist/antagonist, does not affect the nicotine cue. Pharmacol Biochem Behav 64:439–444CrossRefPubMedCentralGoogle Scholar
  62. 62.
    van Maanen MA, Papke RL, Koopman FA, Koepke J, Bevaart L, Clark R, Lamppu D, Elbaum D, LaRosa GJ, Tak PP, Vervoordeldonk MJ (2015) Two novel alpha7 nicotinic acetylcholine receptor ligands: in vitro properties and their efficacy in collagen-induced arthritis in mice. PLoS One 10:e0116227CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Veihelmann A, Brill T, Blobner M, Scheller I, Mayer B, Prolls M, Himpel S, Stadler J (1997) Inhibition of nitric oxide synthesis improves detoxication in inflammatory liver dysfunction in vivo. Am J Phys 273:G530–G536Google Scholar
  64. 64.
    Vincent JL, Norrenberg M (2009) Intensive care unit-acquired weakness: framing the topic. Crit Care Med 37:S296–S298CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, Al Hasani H, Chadt A, Wenzel K, Koch S, Fielitz J, Kleber C, Faust K, Mai K, Spies CD, Luft FC, Boschmann M, Spranger J, Spuler S (2013) Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med 187:387–396CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wollersheim T, Woehlecke J, Krebs M, Hamati J, Lodka D, Luther-Schroeder A, Langhans C, Haas K, Radtke T, Kleber C, Spies C, Labeit S, Schuelke M, Spuler S, Spranger J, Weber-Carstens S, Fielitz J (2014) Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med 40:528–538CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefan J. Schaller
    • 1
    • 2
    Email author
  • Michio Nagashima
    • 1
    • 3
  • Martin Schönfelder
    • 4
  • Tomoki Sasakawa
    • 1
    • 5
  • Fabian Schulz
    • 2
  • Mohammed A. S. Khan
    • 1
  • William R. Kem
    • 6
  • Gerhard Schneider
    • 2
  • Jürgen Schlegel
    • 7
  • Heidrun Lewald
    • 2
  • Manfred Blobner
    • 2
  • J. A. Jeevendra Martyn
    • 1
  1. 1.Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®–BostonHarvard Medical SchoolBostonUSA
  2. 2.Klinik für Anaesthesiologie, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Department of Intensive Care Medicine, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
  4. 4.Institute of Exercise BiologyTechnische Universität MünchenMunichGermany
  5. 5.Department of Anesthesiology and Critical Care MedicineAsahikawa Medical UniversityAsahikawa-shiJapan
  6. 6.Department of Pharmacology and TherapeuticsUniversity of Florida College of MedicineGainesvilleUSA
  7. 7.Institute of PathologyTechnische Universität MünchenMunichGermany

Personalised recommendations