Advertisement

Gene therapy strategies in the treatment of hypertrophic cardiomyopathy

  • Maksymilian Prondzynski
  • Giulia Mearini
  • Lucie Carrier
Invited Review

Abstract

Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.

Keywords

Hypertrophic cardiomyopathy Gene therapy Exon skipping trans-splicing CRISPR/Cas9 MYBPC3 Gene replacement 

Notes

Acknowledgements

We would like to thank Suellen Lopes Oliveira for graphic design of the figure.

Funding information

This work was supported by the DZHK (German Centre for Cardiovascular Research) and the German Ministry of Research Education (BMBF).

Compliance with ethical standard

Conflict of interest

L.C. and G.M. are co-applicants and holders of a provisional patent no. PCT/EP2014/057984 (WO 2014/170470 A1; EP2792742 A1; CA2944186 A1), Priority date Apr 17, 2013, Filling date Apr 17, 2014, publication date Oct 23, 2014. The authors declare no competing financial interests.

References

  1. 1.
    Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P (2017) Development of exon skipping therapies for Duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27:251–259CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN (2017) Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 9:eaan8081CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ashrafian H, Watkins H (2007) Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J Am Coll Cardiol 49:1251–1264CrossRefPubMedGoogle Scholar
  4. 4.
    Azibani F, Brull A, Arandel L, Beuvin M, Nelson I, Jollet A, Ziat E, Prudhon B, Benkhelifa-Ziyyat S, Bitoun M, Lorain S, Bonne G, Bertrand AT (2018) Gene therapy via trans-splicing for LMNA-related congenital muscular dystrophy. Mol Ther Nucleic Acids 10:376–386CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Behrens-Gawlik V, Mearini G, Gedicke-Hornung C, Richard P, Carrier L (2014) MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction. Pflugers Arch 466:215–223CrossRefPubMedGoogle Scholar
  6. 6.
    Ben Jehuda R, Eisen B, Shemer Y, Mekies LN, Szantai A, Reiter I, Cui H, Guan K, Haron-Khun S, Freimark D, Sperling SR, Gherghiceanu M, Arad M, Binah O (2018) CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm 15:267–276CrossRefPubMedGoogle Scholar
  7. 7.
    Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP (2016) mRNA trans-splicing in gene therapy for genetic diseases. Wiley Interdiscip Rev RNA 7:487–498CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bongianino R, Denegri M, Mazzanti A, Lodola F, Vollero A, Boncompagni S, Fasciano S, Rizzo G, Mangione D, Barbaro S, Di Fonso A, Napolitano C, Auricchio A, Protasi F, Priori SG (2017) Allele-specific silencing of mutant mRNA rescues ultrastructural and arrhythmic phenotype in mice carriers of the R4496C mutation in the ryanodine receptor gene (RYR2). Circ Res 121:525–536CrossRefPubMedGoogle Scholar
  9. 9.
    Brezina PR, Kutteh WH (2015) Clinical applications of preimplantation genetic testing. BMJ 350:g7611CrossRefPubMedGoogle Scholar
  10. 10.
    Carrier L, Mearini G, Stathopoulou K, Cuello F (2015) Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 573:188–197CrossRefPubMedGoogle Scholar
  11. 11.
    Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN (2016) A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A 113:338–343CrossRefPubMedGoogle Scholar
  12. 12.
    Chamberlain K, Riyad JM, Weber T (2017) Cardiac gene therapy with adeno-associated virus-based vectors. Curr Opin Cardiol 32:275–282CrossRefGoogle Scholar
  13. 13.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Friedrich FW, Carrier L (2012) Genetics of hypertrophic and dilated cardiomyopathy. Curr Pharm Biotechnol 13:2467–2476CrossRefPubMedGoogle Scholar
  15. 15.
    Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Precigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L (2013) Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 5:1128–1145CrossRefPubMedGoogle Scholar
  16. 16.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Thorac Cardiovasc Surg 142:e153–e203CrossRefPubMedGoogle Scholar
  17. 17.
    Geske JB, Ong KC, Siontis KC, Hebl VB, Ackerman MJ, Hodge DO, Miller VM, Nishimura RA, Oh JK, Schaff HV, Gersh BJ, Ommen SR (2017) Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 38:3434–3440CrossRefPubMedGoogle Scholar
  18. 18.
    Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, Torricelli F, Yeates L, Cecchi F, Ackerman MJ, Olivotto I (2010) Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol 55:1444–1453CrossRefPubMedGoogle Scholar
  19. 19.
    Girolami F, Olivotto I, Passerini I, Zachara E, Nistri S, Re F, Fantini S, Baldini K, Torricelli F, Cecchi F (2006) A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown) 7:601–607CrossRefGoogle Scholar
  20. 20.
    Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, Barnard D, Bouchard A, Jaski B, Lyon AR, Pogoda JM, Rudy JJ, Zsebo KM (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387:1178–1186CrossRefPubMedGoogle Scholar
  21. 21.
    Guo Y, VanDusen NJ, Zhang L, Gu W, Sethi I, Guatimosim S, Ma Q, Jardin BD, Ai Y, Zhang D, Chen B, Guo A, Yuan GC, Song LS, Pu WT (2017) Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circ Res 120:1874–1888CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hammond SM, Wood MJ (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27:196–205CrossRefPubMedGoogle Scholar
  23. 23.
    Hanna E, Remuzat C, Auquier P, Toumi M (2017) Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy 5:1265293CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ho CY (2010) Hypertrophic cardiomyopathy. Heart Fail Clin 6:141–159CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ho CY, Lever HM, DeSanctis R, Farver CF, Seidman JG, Seidman CE (2000) Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation 102:1950–1955CrossRefPubMedGoogle Scholar
  26. 26.
    Hockemeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18:573–586CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C (2005) Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet 42:e59CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ishikawa K, Fish KM, Tilemann L, Rapti K, Aguero J, Santos-Gallego CG, Lee A, Karakikes I, Xie C, Akar FG, Shimada YJ, Gwathmey JK, Asokan A, McPhee S, Samulski J, Samulski RJ, Sigg DC, Weber T, Kranias EG, Hajjar RJ (2014) Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol Ther 22:2038–2045CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15:171–181CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jiang J, Wakimoto H, Seidman JG, Seidman CE (2013) Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science 342:111–114CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  34. 34.
    Johansen AK, Molenaar B, Versteeg D, Leitoguinho AR, Demkes C, Spanjaard B, de Ruiter H, Akbari Moqadam F, Kooijman L, Zentilin L, Giacca M, van Rooij E (2017) Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-mediated delivery of short guide RNAs results in mosaic gene disruption. Circ Res 121:1168–1181CrossRefPubMedGoogle Scholar
  35. 35.
    Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581–588CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kasala D, Yoon AR, Hong J, Kim SW, Yun CO (2016) Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 11:1689–1713CrossRefGoogle Scholar
  37. 37.
    Keeler CE (1947) Gene therapy. J heredity 38:294–298CrossRefGoogle Scholar
  38. 38.
    Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kyrychenko V, Kyrychenko S, Tiburcy M, Shelton JM, Long C, Schneider JW, Zimmermann WH, Bassel-Duby R, Olson EN (2017) Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2(18).  https://doi.org/10.1172/jci.insight.95918
  40. 40.
    Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, Baars MJ, Wijnaendts LC, Stolte-Dijkstra I, Alders M, van Hagen JM (2006) Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet 43:829–832CrossRefPubMedGoogle Scholar
  41. 41.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766PubMedPubMedCentralGoogle Scholar
  43. 43.
    Long C, Li H, Tiburcy M, Rodriguez-Caycedo C, Kyrychenko V, Zhou H, Zhang Y, Min YL, Shelton JM, Mammen PPA, Liaw NY, Zimmermann WH, Bassel-Duby R, Schneider JW, Olson EN (2018) Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv 4:eaap9004CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419CrossRefPubMedGoogle Scholar
  45. 45.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maron BJ (2010) Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 121:445–456CrossRefPubMedGoogle Scholar
  47. 47.
    Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381:242–255CrossRefPubMedGoogle Scholar
  48. 48.
    Maron BJ, Olivotto I, Spirito P, Casey SA, Bellone P, Gohman TE, Graham KJ, Burton DA, Cecchi F (2000) Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation 102:858–864CrossRefPubMedGoogle Scholar
  49. 49.
    Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ (2006) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114:2232–2239CrossRefPubMedGoogle Scholar
  50. 50.
    Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61CrossRefPubMedGoogle Scholar
  51. 51.
    Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C (2014) Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J 35:1078–1087CrossRefPubMedGoogle Scholar
  52. 52.
    Mearini G, Stimpel D, Geertz B, Weinberger F, Krämer E, Schlossarek S, Mourot-Filiatre J, Stöhr A, Dutshc A, Wijnker PJM, Braren I, Katus HA, Müller OJ, Voit T, Eschenhagen T, Carrier L (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables longterm disease prevention in mice. Nat Commun 5:5515CrossRefPubMedGoogle Scholar
  53. 53.
    Mearini G, Stimpel D, Kramer E, Geertz B, Braren I, Gedicke-Hornung C, Precigout G, Muller OJ, Katus HA, Eschenhagen T, Voit T, Garcia L, Lorain S, Carrier L (2013) Repair of Mybpc3 mRNA by 5′-trans-splicing in a mouse model of hypertrophic cardiomyopathy. Mol Ther Nucleic Acids 2:e102CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Monteiro da Rocha A, Guerrero-Serna G, Helms A, Luzod C, Mironov S, Russell M, Jalife J, Day SM, Smith GD, Herron TJ (2016) Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes. J Mol Cell Cardiol 99:197–206CrossRefPubMedGoogle Scholar
  55. 55.
    Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman CE, Brink PA, Watkins H (1997) Sudden death due to troponin T mutations. J Am Coll Cardiol 29:549–555CrossRefPubMedGoogle Scholar
  56. 56.
    Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C (2018) CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehy249
  57. 57.
    Murrey DA, Naughton BJ, Duncan FJ, Meadows AS, Ware TA, Campbell KJ, Bremer WG, Walker CM, Goodchild L, Bolon B, La Perle K, Flanigan KM, McBride KL, McCarty DM, Fu H (2014) Feasibility and safety of systemic rAAV9-hNAGLU delivery for treating mucopolysaccharidosis IIIB: toxicology, biodistribution, and immunological assessments in primates. Hum Gene Ther Clin Dev 25:72–84CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nanni L, Pieroni M, Chimenti C, Simionati B, Zimbello R, Maseri A, Frustaci A, Lanfranchi G (2003) Hypertrophic cardiomyopathy: two homozygous cases with "typical" hypertrophic cardiomyopathy and three new mutations in cases with progression to dilated cardiomyopathy. Biochem Biophys Res Commun 309:391–398CrossRefPubMedGoogle Scholar
  59. 59.
    Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31:317–334CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Olivotto I, Maron MS, Adabag AS, Casey SA, Vargiu D, Link MS, Udelson JE, Cecchi F, Maron BJ (2005) Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol 46:480–487CrossRefPubMedGoogle Scholar
  61. 61.
    Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6(6244):6244CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G, Weber C, Raake P, Koch WJ, Katus HA, Muller OJ, Most P (2011) Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 3:92ra64CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Prondzynski M, Kramer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Muller OJ, Munch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L (2017) Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids 7:475–486CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations and implications for molecular diagnosis strategy. Circulation 107:2227–2232CrossRefPubMedGoogle Scholar
  65. 65.
    Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL et al (1990) Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578CrossRefPubMedGoogle Scholar
  66. 66.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schlossarek S, Mearini G, Carrier L (2011) Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J Mol Cell Cardiol 50:613–620CrossRefPubMedGoogle Scholar
  68. 68.
    Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Gen Genomics 292:525–533CrossRefGoogle Scholar
  70. 70.
    Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J (2015) Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res 105:457–470CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Trochet D, Prudhon B, Beuvin M, Peccate C, Lorain S, Julien L, Benkhelifa-Ziyyat S, Rabai A, Mamchaoui K, Ferry A, Laporte J, Guicheney P, Vassilopoulos S, Bitoun M (2018) Allele-specific silencing therapy for dynamin 2-related dominant centronuclear myopathy. EMBO Mol Med 10:239–253CrossRefPubMedGoogle Scholar
  72. 72.
    Vignier N, Schlossarek S, Fraysse B, Mearini G, Kramer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L (2009) Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res 105:239–248CrossRefPubMedGoogle Scholar
  73. 73.
    Wally V, Murauer EM, Bauer JW (2012) Spliceosome-mediated trans-splicing: the therapeutic cut and paste. J Invest Dermatol 132:1959–1966CrossRefPubMedGoogle Scholar
  74. 74.
    Wang L, Kim K, Parikh S, Cadar AG, Bersell KR, He H, Pinto JR, Kryshtal DO, Knollmann BC (2018) Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes. J Mol Cell Cardiol 114:320–327CrossRefPubMedGoogle Scholar
  75. 75.
    Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A, de Krijger RR, Michels M, de Coo IF, Hoedemaekers YM, Dooijes D (2015) Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet 23:922–928CrossRefPubMedGoogle Scholar
  76. 76.
    Wijnker PJ, Friedrich FW, Dutsch A, Reischmann S, Eder A, Mannhardt I, Mearini G, Eschenhagen T, van der Velden J, Carrier L (2016) Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue. J Mol Cell Cardiol 97:82–92CrossRefPubMedGoogle Scholar
  77. 77.
    Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662CrossRefPubMedGoogle Scholar
  78. 78.
    Xin B, Puffenberger E, Tumbush J, Bockoven JR, Wang H (2007) Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy. Am J Med Genet A 143A:2662–2667CrossRefPubMedGoogle Scholar
  79. 79.
    Ziegler T, Kraus M, Husada W, Gesenhues F, Jiang Q, Pinkenburg O, Trenkwalder T, Laugwitz KL, le Noble F, Weber C, Kupatt C, Hinkel R (2017) Steerable induction of the Thymosin beta4/MRTF-A pathway via AAV-based overexpression induces therapeutic neovascularization. Hum Gene TherGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/LübeckHamburgGermany

Personalised recommendations