Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 8, pp 1255–1270 | Cite as

Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells

  • Ricardo de Pascual
  • Andrés M. Baraibar
  • Iago Méndez-López
  • Martín Pérez-Ciria
  • Ignacio Polo-Vaquero
  • Luis Gandía
  • Sunny E. Ohia
  • Antonio G. García
  • Antonio M. G. de Diego
Signaling and cell physiology
Part of the following topical collections:
  1. Topical Collection: Signaling and cell physiology

Abstract

Gasotransmitter hydrogen sulphide (H2S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H2S) and GYY4137 (GYY, slow donor of H2S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K+-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca2+ entry through voltage-activated Ca2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca2+]c and the K+-elicited [Ca2+]c transients; such effects of H2S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K+ in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca2+ handling by the ER and mitochondria. On the basis of these results, we propose that H2S regulates catecholamine secretory responses triggered by K+ in BCCs by (i) mobilisation of ER Ca2+ and (ii) interference with mitochondrial Ca2+ circulation. In so doing, the clearance of the [Ca2+]c transient will be delayed and the Ca2+-dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.

Keywords

Hydrogen sulphide H2S donors NaHS GYY4137 Exocytosis Chromaffin cell Ion channels Catecholamine release Intracellular calcium 

Abbreviations

H2S

Hydrogen sulphide

GYY

GYY4137; morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate; a slow releasing H2S donor

NaHS

Sodium hydrosulphide; a fast releasing H2S donor

VACCs

Voltage-activated calcium channels

DRG

Dorsal root ganglion

Notes

Funding

Supported by grants from MINECO, Spain (SAF 2013-44108-P and SAF 2016-78892-R). Also by CABYCIC UAM/Bioibérica and Nutrinfant UAM/Alter, Spain. The authors also thank the continued support of Fundación Teófilo Hernando, Madrid, Spain.

Supplementary material

424_2018_2147_MOESM1_ESM.jpg (430 kb)
Supplementary Fig. 1 Compounds NaHS and GYY do not affect inward sodium currents (INa). a, c Original INa traces obtained in BCCs that where voltage-clamped at − 80 mV, following the protocol on the top (test depolarizing pulses of 10-ms duration applied at 10-s intervals). Traces were obtained before (control), after 2 min in the presence of 100 μM each of NaHS or GYY, and 3 min after washout of the compounds (WO). b, d Averaged pooled data (mean ± SEM) of the number of experiments shown in parentheses (number of cells and cultures). (JPG 430 kb)
424_2018_2147_MOESM2_ESM.jpg (404 kb)
Supplementary Fig. 2 Mild cell depolarization of BCCs produced by NaHS, but not by GYY. Membrane potential (Vm) was recorded under the current-clamp configuration of the patch-clamp technique. a, d Vm recording from two example cells exposed to NaHS (a) or GYY (d) during the time period indicated by the horizontal bar. b, c, e, f Pooled data in control conditions, after 2-min exposure to 100 or 300 μM NaHS (b, c) or GYY (e, f), and after compounds washout. Data are means ± SEM of the number of cells and cultures given in parentheses. *p < 0.05, *** p < 0.001 with respect to control currents (JPG 403 kb)
424_2018_2147_MOESM3_ESM.jpg (618 kb)
Supplementary Fig. 3 Evoked action potentials (APs) are modified by NaHS, but not by GYY. Single APs were evoked by threshold depolarisations in current-clamped BCCs. a, d AP traces obtained in example cells before (control) and 1 min after cell exposure to NaHS (a) or GYY (d). b, c, e, f Pooled data on the normalised AP peak amplitude and after-hyperpolarisation (AHP). Data are means ± SEM of the number of cells and cultures shown in parentheses. *p < 0.05, ***p < 0.001, compared with control (JPG 617 kb)
424_2018_2147_MOESM4_ESM.jpg (445 kb)
Supplementary Fig. 4 Monitoring of the cytosolic Ca2+ concentrations ([Ca2+]c) in BCC populations plated in 96-well black plates and loaded with fura-2-AM. The use in these experiments of fura-2 allowed the conversion of arbitrary fluorescence units into nM [Ca2+] (ordinates). Averaged basal [Ca2+]c varied from around 75 to 120 nM. In order to compare traces (a), the initial basal fluorescence has been subtracted. Therefore, values in this panel are actually Δ[Ca2+]c (ordinates). NaHS at the final concentrations (μM) shown in each curve elicited a gradual increase of [Ca2+]c that reached a similar plateau at the three concentrations tested. b Time course of the variation of [Ca2+]c in cells exposed first to NaHS (10 μM) and after 3 min, to cyclopiazonic acid (CPA, 10 μM) added on top of NaHS. c [Ca2+]c elevations produced by adding first CPA (10 μM); 3 min later, NaHS (10 μM) was added on top of CPA. Data shown in all panels are averages of 3–5 experiments. (JPG 444 kb)

References

  1. 1.
    Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071CrossRefPubMedGoogle Scholar
  2. 2.
    Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, Garcia-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arnaiz-Cot JJ, de Diego AM, Hernández-Guijo JM, Gandía L, García AG (2008) A two-step model for acetylcholine control of exocytosis via nicotinic receptors. Biochem Biophys Res Commun 365:413–419CrossRefPubMedGoogle Scholar
  4. 4.
    Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Avanzato D, Merlino A, Porrera S, Wang R, Munaron L, Mancardi D (2014) Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell Physiol Biochem 33:1205–1214CrossRefPubMedGoogle Scholar
  6. 6.
    Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678CrossRefPubMedGoogle Scholar
  7. 7.
    Borges R, Sala F, Garcia AG (1986) Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods 16:289–300CrossRefPubMedGoogle Scholar
  8. 8.
    Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211CrossRefPubMedGoogle Scholar
  9. 9.
    Cuchillo-Ibáñez I, Lejen T, Albillos A, Rose SD, Olivares R, Villarroya M, García AG, Trifaró JM (2004) Mitochondrial calcium sequestration and protein kinase C cooperate in the regulation of cortical F-actin disassembly and secretion in bovine chromaffin cells. J Physiol 560:63–76CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cuchillo-Ibáñez I, Olivares R, Aldea M, Villarroya M, Arroyo G, Fuentealba J, García AG, Albillos A (2002) Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed. Pflugers Arch 444:133–142CrossRefPubMedGoogle Scholar
  11. 11.
    de Diego AM, Gandia L, Garcia AGA (2008) Physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192:287–301CrossRefGoogle Scholar
  12. 12.
    de Diego AM, Tapia L, Alvarez RM, Mosquera M, Cortes L, Lopez I, Gutierrez LM, Gandia L, Garcia AG (2008) A low nicotine concentration augments vesicle motion and exocytosis triggered by K+ depolarisation of chromaffin cells. Eur J Pharmacol 598:81–86Google Scholar
  13. 13.
    De Pascual R, Colmena I, Ruiz-Pascual L, Baraibar AM, Egea J, Gandia L, Garcia AG (2016) Regulation by L channels of Ca2+-evoked secretory responses in ouabain-treated chromaffin cells. Pflugers Arch 468:1779–1792Google Scholar
  14. 14.
    Douglas WW, Rubin RP (1963) The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol 167:288–310CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elies J, Scragg JL, Boyle JP, Gamper N, Peers C (2016) Regulation of the T-type Ca2+ channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2S in nociception. J Physiol 594:4119–4129CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387CrossRefPubMedGoogle Scholar
  17. 17.
    Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488CrossRefPubMedGoogle Scholar
  18. 18.
    Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131CrossRefPubMedGoogle Scholar
  20. 20.
    García AG, Padín F, Fernández-Morales JC, Maroto M, García-Sancho J (2012) Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells. Cell Calcium 51:309–320CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L (1984) Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature 309:69–71CrossRefPubMedGoogle Scholar
  22. 22.
    Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10:31–42Google Scholar
  23. 23.
    García-Sancho J, de Diego AM, García AG (2012) Mitochondria and chromaffin cell function. Pflugers Arch 464:33–41CrossRefPubMedGoogle Scholar
  24. 24.
    Giovannucci DR, Hlubek MD, Stuenkel EL (1999) Mitochondria regulate the Ca2+-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 19:9261–9270Google Scholar
  25. 25.
    Goeger DE, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37:978–981Google Scholar
  26. 26.
    Grynkiewicz G, Poenie M, Tsien RYA (1985) New generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450Google Scholar
  27. 27.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100CrossRefPubMedGoogle Scholar
  28. 28.
    Hennig B, Diener M (2009) Actions of hydrogen sulphide on ion transport across rat distal colon. Br J Pharmacol 158:1263–1275CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361CrossRefPubMedGoogle Scholar
  30. 30.
    Inesi G, Sagara Y (1994) Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol 141:1–6Google Scholar
  31. 31.
    Jackson-Weaver O, Osmond JM, Riddle MA, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL (2013) Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca2+-activated K+ channels and smooth muscle Ca2+ sparks. Am J Physiol Heart Circ Physiol 304:H1446–H1454Google Scholar
  32. 32.
    Kimura H (2016) Hydrogen polysulfide (H2Sn) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). J Neural Transm (Vienna) 123:1235–1245Google Scholar
  33. 33.
    Kombian SB, Reiffenstein RJ, Colmers WF (1993) The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70:81–96CrossRefPubMedGoogle Scholar
  34. 34.
    Kuksis M, Ferguson AV (2015) Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. J Neurophysiol 114:1641–1651CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie YF, Ohia SE (2009) Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem Res 34:400–406CrossRefPubMedGoogle Scholar
  36. 36.
    Lee SR, Nilius B, Han J (2018) Gaseous signaling molecules in cardiovascular function: from mechanisms to clinical translation. Rev Physiol Biochem PharmacolGoogle Scholar
  37. 37.
    Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–124CrossRefPubMedGoogle Scholar
  38. 38.
    Leffler CW, Parfenova H, Jaggar JH, Wang R (2006) Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol (1985) 100:1065–1076CrossRefGoogle Scholar
  39. 39.
    Li L, Moore PK (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 29:84–90CrossRefPubMedGoogle Scholar
  40. 40.
    Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187CrossRefPubMedGoogle Scholar
  41. 41.
    Machado JD, Segura F, Brioso MA, Borges R (2000) Nitric oxide modulates a late step of exocytosis. J Biol Chem 275:20274–20279CrossRefPubMedGoogle Scholar
  42. 42.
    Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61CrossRefPubMedGoogle Scholar
  44. 44.
    Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611CrossRefPubMedGoogle Scholar
  45. 45.
    Moro MA, Michelena P, Sanchez-Garcia P, Palmer R, Moncada S, Garcia AG (1993) Activation of adrenal medullary L-arginine: nitric oxide pathway by stimuli which induce the release of catecholamines. Eur J Pharmacol 246:213–218CrossRefPubMedGoogle Scholar
  46. 46.
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559CrossRefPubMedGoogle Scholar
  48. 48.
    Opere CA, Monjok EM, Kulkarni KH, Njie YF, Ohia SE (2009) Regulation of [3H] D-aspartate release from mammalian isolated retinae by hydrogen sulfide. Neurochem Res 34:1962–1968CrossRefPubMedGoogle Scholar
  49. 49.
    Padin JF, Fernandez-Morales JC, de Diego AM, Garcia AG (2015) Calcium Channel subtypes and exocytosis in chromaffin cells at early life. Curr Mol Pharmacol 8:81–86CrossRefPubMedGoogle Scholar
  50. 50.
    Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21977CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507CrossRefPubMedGoogle Scholar
  52. 52.
    Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17:95–105CrossRefPubMedGoogle Scholar
  53. 53.
    Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351Google Scholar
  54. 54.
    Rose P, Dymock BW, Moore PK (2015) GYY4137, a novel water-soluble, H2S-releasing molecule. Methods Enzymol 554:143–167CrossRefPubMedGoogle Scholar
  55. 55.
    Salvi A, Bankhele P, Jamil JM, Kulkarni-Chitnis M, Njie-Mbye YF, Ohia SE, Opere CA (2016) Pharmacological actions of hydrogen sulfide donors on sympathetic neurotransmission in the bovine anterior uvea, in vitro. Neurochem Res 41:1020–1028CrossRefPubMedGoogle Scholar
  56. 56.
    Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823Google Scholar
  57. 57.
    Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch 459:389–397CrossRefPubMedGoogle Scholar
  58. 58.
    Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935CrossRefPubMedGoogle Scholar
  59. 59.
    Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763CrossRefPubMedGoogle Scholar
  60. 60.
    Tapia L, Garcia-Eguiagaray J, Garcia AG, Gandia L (2009) Preconditioning stimuli that augment chromaffin cell secretion. Am J Physiol Cell Physiol 296:C792–C800CrossRefPubMedGoogle Scholar
  61. 61.
    Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178CrossRefPubMedGoogle Scholar
  62. 62.
    Testai L, Marino A, Piano I, Brancaleone V, Tomita K, Di Cesare Mannelli L, Martelli A, Citi V, Breschi MC, Levi R, Gargini C, Bucci M, Cirino G, Ghelardini C, Calderone V (2016) The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharmacol Res 113:290–299CrossRefPubMedGoogle Scholar
  63. 63.
    Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353CrossRefPubMedGoogle Scholar
  64. 64.
    Villarroya M, Olivares R, Ruiz A, Cano-Abad MF, de Pascual R, Lomax RB, Lopez MG, Mayorgas I, Gandia L, Garcia AG (1999) Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells. J Physiol 516(Pt 2):421–432CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17:22–31CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    von Ruden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065CrossRefGoogle Scholar
  67. 67.
    Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12:1061–1064CrossRefPubMedGoogle Scholar
  68. 68.
    Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896CrossRefPubMedGoogle Scholar
  69. 69.
    Webb GD, Lim LH, Oh VM, Yeo SB, Cheong YP, Ali MY, El Oakley R, Lee CN, Wong PS, Caleb MG, Salto-Tellez M, Bhatia M, Chan ES, Taylor EA, Moore PK (2008) Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther 324:876–882CrossRefPubMedGoogle Scholar
  70. 70.
    Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang YX, Hu KD, Lv K, Li YH, Hu LY, Zhang XQ, Ruan L, Liu YS, Zhang H (2015) The hydrogen sulfide donor NaHS delays programmed cell death in barley aleurone layers by acting as an antioxidant. Oxidative Med Cell Longev 2015:714756Google Scholar
  72. 72.
    Zhou Z, Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol 469:245–273CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhu D, Yu X, Sun J, Li J, Ma X, Yao W (2012) H2S induces catecholamine secretion in rat adrenal chromaffin cells. Toxicology 302:40–43CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ricardo de Pascual
    • 1
  • Andrés M. Baraibar
    • 1
  • Iago Méndez-López
    • 1
    • 2
  • Martín Pérez-Ciria
    • 1
  • Ignacio Polo-Vaquero
    • 1
  • Luis Gandía
    • 1
  • Sunny E. Ohia
    • 3
  • Antonio G. García
    • 1
    • 2
    • 4
  • Antonio M. G. de Diego
    • 1
    • 2
    • 4
  1. 1.Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Investigación SanitariaHospital Universitario de la PrincesaMadridSpain
  3. 3.Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesTexas Southern UniversityHoustonUSA
  4. 4.DNS Neuroscience, Parque Científico de MadridMadridSpain

Personalised recommendations