The function of TRP channels in neutrophil granulocytes

  • Karolina Najder
  • Boris Musset
  • Otto Lindemann
  • Etmar Bulk
  • Albrecht SchwabEmail author
  • Benedikt Fels
Invited Review
Part of the following topical collections:
  1. Invited Review


Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.


Calcium Cell migration Cell signaling Neutrophil granulocyte Pancreas TRP channels 



The authors wish to thank past and present members of their laboratories whose enthusiastic work contributed largely to developing the concepts described in this review.

Funding information

K.N. is supported by a fellowship from the CIM-IMPRS graduate school. A.S. thanks the support from the Deutsche Forschungsgemeinschaft (DFG; SCHW 407/17-1), Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany, and IZKF Münster (Schw2/020/18). B.F. received support from Cells-in-Motion Cluster of Excellence (EXC 1003-CiM; PP 2016-12), and B.M. is supported by DFG grant MU 3574/4-1.


  1. 1.
    Arcangeli A (2011) Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk. Am J Physiol Cell Physiol 301:C762–C771PubMedCrossRefGoogle Scholar
  2. 2.
    Bankers-Fulbright JL, Kephart GM, Loegering DA, Bradford AL, Okada S, Kita H, Gleich GJ (1998) Sulfonylureas inhibit cytokine-induced eosinophil survival and activation. J Immunol 160:5546–5553PubMedGoogle Scholar
  3. 3.
    Beceiro S, Radin JN, Chatuvedi R, Piazuelo MB, Horvarth DJ, Cortado H, Gu Y, Dixon B, Gu C, Lange I, Koomoa DL, Wilson KT, Algood HM, Partida-Sanchez S (2017) TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection. Mucosal Immunol 10:493–507PubMedCrossRefGoogle Scholar
  4. 4.
    Behe P, Foote JR, Levine AP, Platt CD, Chou J, Benavides F, Geha RS, Segal AW (2017) The LRRC8A mediated “swell activated” chloride conductance is dispensable for vacuolar homeostasis in neutrophils. Front Pharmacol 8:262PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328:814–817PubMedCrossRefGoogle Scholar
  6. 6.
    Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706PubMedCrossRefGoogle Scholar
  7. 7.
    Cao S, Liu P, Zhu H, Gong H, Yao J, Sun Y, Geng G, Wang T, Feng S, Han M, Zhou J, Xu Y (2015) Extracellular acidification acts as a key modulator of neutrophil apoptosis and functions. PLoS One 10:e0137221PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan IC, Dyer MJ (2010) HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 11:265–272PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Carrato A, Falcone A, Ducreux M, Valle JW, Parnaby A, Djazouli K, Alnwick-Allu K, Hutchings A, Palaska C, Parthenaki I (2015) A systematic review of the burden of pancreatic cancer in Europe: real-world impact on survival, quality of life and costs. J Gastrointest Cancer 46:201–211PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chang SJ, Chen YC, Yang CH, Huang SC, Huang HK, Li CC, Harn HI, Chiu WT (2017) Revealing the three dimensional architecture of focal adhesion components to explain Ca2+-mediated turnover of focal adhesions. Biochim Biophys Acta 1861:624–635PubMedCrossRefGoogle Scholar
  11. 11.
    Chen YT, Chen YF, Chiu WT, Wang YK, Chang HC, Shen MR (2013) The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 126:1260–1267PubMedCrossRefGoogle Scholar
  12. 12.
    Clemens RA, Lowell CA (2015) Store-operated calcium signaling in neutrophils. J Leukoc Biol 98:497–502PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Colom B, Bodkin JV, Beyrau M, Woodfin A, Ody C, Rourke C, Chavakis T, Brohi K, Imhof BA, Nourshargh S (2015) Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42:1075–1086PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123:3446–3458PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cross AR, Erickson RW, Ellis BA, Curnutte JT (1999) Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations. Biochem J 338:229–233PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxford) 195:3–11CrossRefGoogle Scholar
  17. 17.
    DeCoursey TE, Cherny VV (1993) Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J 65:1590–1598PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    DeCoursey TE, Cherny VV (1994) Na+-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils. J Gen Physiol 103:755–785PubMedCrossRefGoogle Scholar
  19. 19.
    DeCoursey TE, Cherny VV, Zhou W, Thomas LL (2000) Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci U S A 97:6885–6889PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    DeCoursey TE, Morgan D, Cherny VV (2003) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–534PubMedCrossRefGoogle Scholar
  21. 21.
    DeCoursey TE (2016) The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 273:194–218PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Demaurex N, Rawlings SR, Krause KH, Jaconi ME, Lew PD, Schlegel W (1994) Combination of microfluorimetric monitoring of cytosolic calcium and pH with patch clamp electrophysiological recordings in neutrophil granulocytes. Methods Enzymol 238:308–320PubMedCrossRefGoogle Scholar
  23. 23.
    Di A, Gao XP, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM, Malik AB (2011) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13:29–34PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Di A, Kiya T, Gong H, Gao X, Malik AB (2017) Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages. J Cell Sci 130:735–744PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Djamgoz MB, Coombes RC, Schwab A (2014) Ion transport and cancer: from initiation to metastasis. Philos Trans R Soc Lond Ser B Biol Sci 369:20130092CrossRefGoogle Scholar
  26. 26.
    Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli MT, Scarpa A, Zappavigna S, Marra M, Abbruzzese A, Bifulco M, Caraglia M, Palmieri M (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2:e152PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG (2015) The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol 185:1172–1184PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Du J, Xie J, Yue L (2009) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134:471–488PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Duffy JP, Eibl G, Reber HA, Hines OJ (2003) Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer 2:12PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N (2010) VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med 207:129–139PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Essin K, Salanova B, Kettritz R, Sausbier M, Luft FC, Kraus D, Bohn E, Autenrieth IB, Peschel A, Ruth P, Gollasch M (2007) Large-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity. Am J Physiol Cell Physiol 293:C45–C54PubMedCrossRefGoogle Scholar
  32. 32.
    Evans JH, Falke JJ (2007) Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci U S A 104:16176–16181PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fabian A, Bertrand J, Lindemann O, Pap T, Schwab A (2012) Transient receptor potential canonical channel 1 impacts on mechanosignaling during cell migration. Pflügers Arch 464:623–630PubMedCrossRefGoogle Scholar
  34. 34.
    Faouzi M, Penner R (2014) TRPM2. Handb Exp Pharmacol 222:403–426PubMedCrossRefGoogle Scholar
  35. 35.
    Fels B, Nielsen N, Schwab A (2016) Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. Eur Biophys J 45:657–670PubMedCrossRefGoogle Scholar
  36. 36.
    Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirjak G, Enyedi P, England SK, Moreland JG, Ligeti E, Nauseef WM, DeCoursey TE (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol 127:659–672PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Foote JR, Behe P, Frampton M, Levine AP, Segal AW (2017) An exploration of charge compensating ion channels across the phagocytic vacuole of neutrophils. Front Pharmacol 8:94PubMedPubMedCentralGoogle Scholar
  38. 38.
    Futosi K, Fodor S, Mocsai A (2013) Reprint of neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:1185–1197PubMedCrossRefGoogle Scholar
  39. 39.
    Gao YD, Hanley PJ, Rinne S, Zuzarte M, Daut J (2010) Calcium-activated K+ channel (KCa3.1) activity during Ca2+ store depletion and store-operated Ca2+ entry in human macrophages. Cell Calcium 48:19–27PubMedCrossRefGoogle Scholar
  40. 40.
    Gordienko DV, Tare M, Parveen S, Fenech CJ, Robinson C, Bolton TB (1996) Voltage-activated proton current in eosinophils from human blood. J Physiol 496(Pt 2):299–316PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32:3931–3941PubMedCrossRefGoogle Scholar
  42. 42.
    Hayashi H, Aharonovitz O, Alexander RT, Touret N, Furuya W, Orlowski J, Grinstein S (2008) Na+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. Am J Physiol Cell Physiol 294:C526–C534PubMedCrossRefGoogle Scholar
  43. 43.
    Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Lückhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Heiner I, Eisfeld J, Lückhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33:533–540PubMedCrossRefGoogle Scholar
  45. 45.
    Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Luckhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, Jirik FR, Kubes P (2008) PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol 9:743–752PubMedCrossRefGoogle Scholar
  47. 47.
    Herter J, Zarbock A (2013) Integrin regulation during leukocyte recruitment. J Immunol 190:4451–4457PubMedCrossRefGoogle Scholar
  48. 48.
    Hind LE, Vincent WJ, Huttenlocher A (2016) Leading from the back: the role of the uropod in neutrophil polarization and migration. Dev Cell 38:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S (2013) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:271–281PubMedCrossRefGoogle Scholar
  50. 50.
    Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Koch WJ, Feldman AM, Madesh M, Cheung JY (2015) Ca2+ entry via TRPM2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 308:H637–H650PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277PubMedCrossRefGoogle Scholar
  52. 52.
    Hong CW, Kim TK, Ham HY, Nam JS, Kim YH, Zheng H, Pang B, Min TK, Jung JS, Lee SN, Cho HJ, Kim EJ, Hong IH, Kang TC, Lee J, Oh SB, Jung SJ, Kim SJ, Song DK (2010) Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine.GlyR alpha 2/TRPM2/p38 MAPK signaling. J Immunol 184:4401–4413PubMedCrossRefGoogle Scholar
  53. 53.
    Huang B, Ling Y, Lin J, Fang Y, Wu J (2016) Mechanical regulation of calcium signaling of HL-60 on P-selectin under flow. Biomed Eng Online 15:153PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Iglesias PA, Devreotes PN (2012) Biased excitable networks: how cells direct motion in response to gradients. Curr Opin Cell Biol 24:245–253PubMedCrossRefGoogle Scholar
  55. 55.
    Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, Asaoka Y, Maeda S, Ikenoue T, Tateishi K, Wright CV, Koike K, Omata M, Moses HL (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121:4106–4117PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ince C, Thio B, van Duijn B, van Dissel JT, Ypey DL, Leijh PC (1987) Intracellular K+, Na+ and Cl concentrations and membrane potential in human monocytes. Biochim Biophys Acta 905:195–204PubMedCrossRefGoogle Scholar
  57. 57.
    Jaconi ME, Rivest RW, Schlegel W, Wollheim CB, Pittet D, Lew PD (1988) Spontaneous and chemoattractant-induced oscillations of cytosolic free calcium in single adherent human neutrophils. J Biol Chem 263:10557–10560PubMedGoogle Scholar
  58. 58.
    Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E (2016) Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1beta secretion in response to ATP. Nat Commun 7:10555PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kawa K (1989) Electrophysiological properties of three types of granulocytes in circulating blood of the newt. J Physiol 415:211–231PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kini V, Chavez A, Mehta D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285:33082–33091PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreasen K, Shapland E, Kucera G, Mogan J, Humann J, Lenz LL, Morrison AD, Perraud AL (2011) Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc Natl Acad Sci U S A 108:11578–11583PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Knowles H, Li Y, Perraud AL (2013) The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55:241–248PubMedCrossRefGoogle Scholar
  64. 64.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175PubMedCrossRefGoogle Scholar
  65. 65.
    Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922PubMedCrossRefGoogle Scholar
  66. 66.
    Koshkin V, Lotan O, Pick E (1997) Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Biochim Biophys Acta 1319:139–146PubMedCrossRefGoogle Scholar
  67. 67.
    Krause KH, Welsh MJ (1990) Voltage-dependent and Ca2+-activated ion channels in human neutrophils. J Clin Invest 85:491–498PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lachowski D, Cortes E, Pink D, Chronopoulos A, Karim SA, PM J, Del Rio Hernandez AE (2017) Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Sci Rep 7:2506PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lacy P, Abdel-Latif D, Steward M, Musat-Marcu S, Man SF, Moqbel R (2003) Divergence of mechanisms regulating respiratory burst in blood and sputum eosinophils and neutrophils from atopic subjects. J Immunol 170:2670–2679PubMedCrossRefGoogle Scholar
  70. 70.
    Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44:604–615PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530PubMedGoogle Scholar
  72. 72.
    Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Maree R, Evans RJ, Volders PG, Bours V, Oury C (2009) P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol 183:2801–2809PubMedCrossRefGoogle Scholar
  73. 73.
    Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophils. Microbes Infect 5:1299–1306PubMedCrossRefGoogle Scholar
  74. 74.
    Lindemann O, Umlauf D, Frank S, Schimmelpfennig S, Bertrand J, Pap T, Hanley PJ, Fabian A, Dietrich A, Schwab A (2013) TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J Immunol 190:5496–5505PubMedCrossRefGoogle Scholar
  75. 75.
    Lindemann O, Strodthoff C, Horstmann M, Nielsen N, Jung F, Schimmelpfennig S, Heitzmann M, Schwab A (2015) TRPC1 regulates fMLP-stimulated migration and chemotaxis of neutrophil granulocytes. Biochim Biophys Acta 1853:2122–2130PubMedCrossRefGoogle Scholar
  76. 76.
    Lollike K, Borregaard N, Lindau M (1995) The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J Cell Biol 129:99–104PubMedCrossRefGoogle Scholar
  77. 77.
    Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314PubMedCrossRefGoogle Scholar
  78. 78.
    Marki A, Esko JD, Pries AR, Ley K (2015) Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 98:503–515PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Perez-Cornejo P, Arreola J (2010) Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signal 6:297–306PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Masia R, Krause DS, Yellen G (2015) The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver. Am J Physiol Cell Physiol 308:C264–C276PubMedCrossRefGoogle Scholar
  81. 81.
    Matsumoto K, Kawanaka H, Hori M, Kusamori K, Utsumi D, Tsukahara T, Amagase K, Horie S, Yamamoto A, Ozaki H, Mori Y, Kato S (2018) Role of transient receptor potential melastatin 2 in surgical inflammation and dysmotility in a mouse model of post-operative ileus. Am J Physiol Gastrointest Liver PhysiolGoogle Scholar
  82. 82.
    Mayer P, Dinkic C, Jesenofsky R, Klauss M, Schirmacher P, Dapunt U, Hackert T, Uhle F, Hansch GM, Gaida MM (2018) Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging. Theranostics 8:13–30PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    McMeekin SR, Dransfield I, Rossi AG, Haslett C, Walker TR (2006) E-selectin permits communication between PAF receptors and TRPC channels in human neutrophils. Blood 107:4938–4945PubMedCrossRefGoogle Scholar
  84. 84.
    Melzer N, Hicking G, Gobel K, Wiendl H (2012) TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One 7:e47617PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen SJ, Keefer K, Conrad K, Feldman AM, Cheung JY (2013) The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H1010–H1022PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Miller BA, Hoffman NE, Merali S, Zhang XQ, Wang J, Rajan S, Shanmughapriya S, Gao E, Barrero CA, Mallilankaraman K, Song J, Gu T, Hirschler-Laszkiewicz I, Koch WJ, Feldman AM, Madesh M, Cheung JY (2014) TRPM2 channels protect against cardiac ischemia-reperfusion injury: role of mitochondria. J Biol Chem 289:7615–7629PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mittal M, Nepal S, Tsukasaki Y, Hecquet CM, Soni D, Rehman J, Tiruppathi C, Malik AB (2017) Neutrophil activation of endothelial cell-expressed TRPM2 mediates transendothelial neutrophil migration and vascular injury. Circ Res 121:1081–1091PubMedCrossRefGoogle Scholar
  88. 88.
    Mogilner A, Oster G (2003) Polymer motors: pushing out the front and pulling up the back. Curr Biol 13:R721–R733PubMedCrossRefGoogle Scholar
  89. 89.
    Morgan D, Capasso M, Musset B, Cherny VV, Rios E, Dyer MJ, DeCoursey TE (2009) Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proc Natl Acad Sci U S A 106:18022–18027PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Morgan D, Decoursey TE (2014) Analysis of electrophysiological properties and responses of neutrophils. Methods Mol Biol 1124:121–158PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Morikis VA, Radecke C, Jiang Y, Heinrich V, Curry FR, Simon SI (2015) Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force. Biorheology 52:447–463PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011PubMedCrossRefGoogle Scholar
  93. 93.
    Musset B, Morgan D, Cherny VV, MacGlashan DW Jr, Thomas LL, Rios E, DeCoursey TE (2008) A pH-stabilizing role of voltage-gated proton channels in IgE-mediated activation of human basophils. Proc Natl Acad Sci U S A 105:11020–11025PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Neesse A, Krug S, Gress TM, Tuveson DA, Michl P (2013) Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma. Onco Targets Ther 7:33–43PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Neilson MP, Veltman DM, van Haastert PJ, Webb SD, Mackenzie JA, Insall RH (2011) Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9:e1000618PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nielsen MF, Mortensen MB, Detlefsen S (2016) Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol 22:2678–2700PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nielsen N, Lindemann O, Schwab A (2014) TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 171:5524–5540PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, Meuth SG, Prevarskaya N, Schwab A (2017) TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch 469:1567–1577PubMedCrossRefGoogle Scholar
  99. 99.
    Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814PubMedCrossRefGoogle Scholar
  100. 100.
    Norton LJ, Zhang Q, Saqib KM, Schrewe H, Macura K, Anderson KE, Lindsley CW, Brown HA, Rudge SA, Wakelam MJ (2011) PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils. J Cell Sci 124:1973–1983PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Novak I, Haanes KA, Wang J (2013) Acid-base transport in pancreas—new challenges. Front Physiol 4:380PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nusse O, Lindau M (1988) The dynamics of exocytosis in human neutrophils. J Cell Biol 107:2117–2123PubMedCrossRefGoogle Scholar
  103. 103.
    Nusse O, Lindau M (1990) GTP gamma S-induced calcium transients and exocytosis in human neutrophils. Biosci Rep 10:93–103PubMedCrossRefGoogle Scholar
  104. 104.
    Nusse O, Lindau M (1993) The calcium signal in human neutrophils and its relation to exocytosis investigated by patch-clamp capacitance and Fura-2 measurements. Cell Calcium 14:255–269PubMedCrossRefGoogle Scholar
  105. 105.
    Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, Fields RC, DeNardo DG, Hawkins WG, Goedegebuure P, Linehan DC (2017) Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut.
  106. 106.
    Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507PubMedCrossRefGoogle Scholar
  107. 107.
    Okajima F (2013) Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 25:2263–2271PubMedCrossRefGoogle Scholar
  108. 108.
    Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza-Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE (2007) Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol 179:7827–7839PubMedCrossRefGoogle Scholar
  109. 109.
    Partrick DA, Moore EE, Offner PJ, Meldrum DR, Tamura DY, Johnson JL, Silliman CC (2000) Maximal human neutrophil priming for superoxide production and elastase release requires p38 mitogen-activated protein kinase activation. Arch Surg 135:219–225PubMedCrossRefGoogle Scholar
  110. 110.
    Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA (2017) Alternating pH landscapes shape epithelial cancer initiation and progression: focus on pancreatic cancer. BioEssays 39Google Scholar
  111. 111.
    Perez-Cornejo P, Arreola J, Law FY, Schultz JB, Knauf PA (2004) Volume-sensitive chloride channels do not mediate activation-induced chloride efflux in human neutrophils. J Immunol 172:6988–6993PubMedCrossRefGoogle Scholar
  112. 112.
    Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203:2569–2575PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL, Novitskiy SV (2017) Development of aggressive pancreatic ductal adenocarcinomas depends on granulocyte colony stimulating factor secretion in carcinoma cells. Cancer Immunol Res 5:718–729PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Powell D, Tauzin S, Hind LE, Deng Q, Beebe DJ, Huttenlocher A (2017) Chemokine signaling and the regulation of bidirectional leukocyte migration in interstitial tissues. Cell Rep 19:1572–1585PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37:41–52PubMedCrossRefGoogle Scholar
  116. 116.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Qian X, Numata T, Zhang K, Li C, Hou J, Mori Y, Fang X (2014) Transient receptor potential melastatin 2 protects mice against polymicrobial sepsis by enhancing bacterial clearance. Anesthesiology 121:336–351PubMedCrossRefGoogle Scholar
  118. 118.
    Qian X, Zhao H, Chen X, Li J (2018) Disruption of transient receptor potential melastatin 2 decreases elastase release and bacterial clearance in neutrophils. Innate Immun 24:122–130PubMedCrossRefGoogle Scholar
  119. 119.
    Rada BK, Geiszt M, Kaldi K, Timar C, Ligeti E (2004) Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104:2947–2953PubMedCrossRefGoogle Scholar
  120. 120.
    Riazanski V, Gabdoulkhakova AG, Boynton LS, Eguchi RR, Deriy LV, Hogarth DK, Loaec N, Oumata N, Galons H, Brown ME, Shevchenko P, Gallan AJ, Yoo SG, Naren AP, Villereal ML, Beacham DW, Bindokas VP, Birnbaumer L, Meijer L, Nelson DJ (2015) TRPC6 channel translocation into phagosomal membrane augments phagosomal function. Proc Natl Acad Sci U S A 112:E6486–E6495PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Saito M, Sato R, Hisatome I, Narahashi T (1996) RANTES and platelet-activating factor open Ca2+-activated K+ channels in eosinophils. FASEB J 10:792–798PubMedCrossRefGoogle Scholar
  122. 122.
    Saito M, Sato R, Munoz NM, Herrnreiter A, Oyaizu M, Kasugai H, Narahashi T, Leff AR (1997) Association of granular exocytosis with Ca2+-activated K+ channels in human eosinophils. Am J Phys 273:L16–L21Google Scholar
  123. 123.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330PubMedCrossRefGoogle Scholar
  124. 124.
    Schilling T, Gratopp A, DeCoursey TE, Eder C (2002) Voltage-activated proton currents in human lymphocytes. J Physiol 545:93–105PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Schrenzel J, Demaurex N, Lew DP, Krause KH (1995) Characterization of Ca2+ influx in human neutrophils using the patch clamp technique. Schweiz Med Wochenschr 125:1174–1178PubMedGoogle Scholar
  126. 126.
    Schrenzel J, Lew DP, Krause KH (1996) Proton currents in human eosinophils. Am J Phys 271:C1861–C1871CrossRefGoogle Scholar
  127. 127.
    Schrenzel J, Serrander L, Banfi B, Nusse O, Fouyouzi R, Lew DP, Demaurex N, Krause KH (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737PubMedCrossRefGoogle Scholar
  128. 128.
    Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, Romer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206:86–94PubMedCrossRefGoogle Scholar
  129. 129.
    Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913PubMedCrossRefGoogle Scholar
  130. 130.
    Schwingshackl A, Moqbel R, Duszyk M (2000) Involvement of ion channels in human eosinophil respiratory burst. J Allergy Clin Immunol 106:272–279PubMedCrossRefGoogle Scholar
  131. 131.
    Schwingshackl A, Moqbel R, Duszyk M (2002) Nitric oxide activates ATP-dependent K+ channels in human eosinophils. J Leukoc Biol 71:807–812PubMedGoogle Scholar
  132. 132.
    Sharma B, Nannuru KC, Varney ML, Singh RK (2015) Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin Exp Metastasis 32:65–72PubMedCrossRefGoogle Scholar
  133. 133.
    Shen M, Hu P, Donskov F, Wang G, Liu Q, Du J (2014) Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS One 9:e98259PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Shikano M, Ueda T, Kamiya T, Ishida Y, Yamada T, Mizushima T, Shimura T, Mizoshita T, Tanida S, Kataoka H, Shimada S, Ugawa S, Joh T (2011) Acid inhibits TRPV4-mediated Ca2+ influx in mouse esophageal epithelial cells. Neurogastroenterol Motil 23(1020–8):e497Google Scholar
  135. 135.
    Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794PubMedCrossRefGoogle Scholar
  136. 136.
    Sogkas G, Vogtle T, Rau E, Gewecke B, Stegner D, Schmidt RE, Nieswandt B, Gessner JE (2015) Orai1 controls C5a-induced neutrophil recruitment in inflammation. Eur J Immunol 45:2143–2153PubMedCrossRefGoogle Scholar
  137. 137.
    Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373–C383PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Starkus JG, Fleig A, Penner R (2010) The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 588:1227–1240PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ, Morton JP (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29:832–845PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, Beissert S, Guck J, Gunther C (2018) Toll-like receptor-mediated upregulation of CXCL16 in psoriasis orchestrates neutrophil activation. J Investig Dermatol 138:344–354PubMedCrossRefGoogle Scholar
  141. 141.
    Stoddard JS, Steinbach JH, Simchowitz L (1993) Whole cell Cl currents in human neutrophils induced by cell swelling. Am J Phys 265:C156–C165CrossRefGoogle Scholar
  142. 142.
    Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M (2012) Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 287:3530–3540PubMedCrossRefGoogle Scholar
  143. 143.
    Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y, Munn LL, Jain RK (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci U S A 109:15101–15108PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, Fleig A, Penner R, Partida-Sanchez S (2011) Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J 25:3529–3542PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Tare M, Prestwich SA, Gordienko DV, Parveen S, Carver JE, Robinson C, Bolton TB (1998) Inwardly rectifying whole cell potassium current in human blood eosinophils. J Physiol 506:303–318PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tazzyman S, Barry ST, Ashton S, Wood P, Blakey D, Lewis CE, Murdoch C (2011) Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. Int J Cancer 129:847–858PubMedCrossRefGoogle Scholar
  147. 147.
    Trevani AS, Andonegui G, Giordano M, Lopez DH, Gamberale R, Minucci F, Geffner JR (1999) Extracellular acidification induces human neutrophil activation. J Immunol 162:4849–4857PubMedGoogle Scholar
  148. 148.
    Tsai FC, Meyer T (2012) Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Curr Biol 22:837–842PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjo S, Meyer T (2014) A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 16:133–144PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tsurumaki H, Mogi C, Aoki-Saito H, Tobo M, Kamide Y, Yatomi M, Sato K, Dobashi K, Ishizuka T, Hisada T, Yamada M, Okajima F (2015) Protective role of proton-sensing TDAG8 in lipopolysaccharide-induced acute lung injury. Int J Mol Sci 16:28931–28942PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279:34643–34654PubMedCrossRefGoogle Scholar
  152. 152.
    von Tscharner V, Prod'hom B, Baggiolini M, Reuter H (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324:369–372CrossRefGoogle Scholar
  153. 153.
    Wang CH, Rong MY, Wang L, Ren Z, Chen LN, Jia JF, Li XY, Wu ZB, Chen ZN, Zhu P (2014) CD147 up-regulates calcium-induced chemotaxis, adhesion ability and invasiveness of human neutrophils via a TRPM-7-mediated mechanism. Rheumatology (Oxford) 53:2288–2296CrossRefGoogle Scholar
  154. 154.
    Wang G (2016) Chloride flux in phagocytes. Immunol Rev 273:219–231PubMedCrossRefGoogle Scholar
  155. 155.
    Wang G, Cao L, Liu X, Sieracki NA, Di A, Wen X, Chen Y, Taylor S, Huang X, Tiruppathi C, Zhao YY, Song Y, Gao X, Jin T, Bai C, Malik AB, Xu J (2016) Oxidant sensing by TRPM2 inhibits neutrophil migration and mitigates inflammation. Dev Cell 38:453–462PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA (2015) TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J Exp Med 212:1883–1899PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Winterbourn CC, Kettle AJ (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 18:642–660PubMedCrossRefGoogle Scholar
  158. 158.
    Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, Awwad K, Wang L, Erfinanda L, Nouailles G, Witzenrath M, Vogelzang A, Lv L, Lee WL, Zhang H, Rotstein O, Kapus A, Szaszi K, Fleming I, Liedtke WB, Kuppe H, Kuebler WM (2016) Role of transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 54:370–383PubMedCrossRefGoogle Scholar
  160. 160.
    Zhang Z, Cui P, Zhang K, Chen Q, Fang X (2017) Transient receptor potential melastatin 2 regulates phagosome maturation and is required for bacterial clearance in Escherichia coli sepsis. Anesthesiology 126:128–139PubMedCrossRefGoogle Scholar
  161. 161.
    Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Karolina Najder
    • 1
  • Boris Musset
    • 2
  • Otto Lindemann
    • 1
  • Etmar Bulk
    • 1
  • Albrecht Schwab
    • 1
    Email author
  • Benedikt Fels
    • 1
  1. 1.Institut für Physiologie IIMünsterGermany
  2. 2.Institut für PhysiologieParacelsus Medizinische PrivatuniversitätNürnbergGermany

Personalised recommendations